From 1 - 2 / 2
  • A new monthly long term average (climatology) of Leaf Area Index (LAI) has been developed for use as ancillary data with the Joint UK Land Environment Simulator (JULES) Land Surface Model and the UK Met Office Unified Model. It is derived from an improved version of long time series of LAI from the original Global LAnd Surface Satellite (GLASS) products ( The GLASS data consists of a time series of LAI from Moderate Resolution Imaging Spectroradiometer (MODIS) surface-reflectance data for the period 2000-2014. The MODIS data was provided in a spatial resolution of 1km in a sinusoidal projection and is interpolated into 0.5◦ on a geographic latitude/longitude projection in this dataset. The total LAI from MODIS is segregated into five different Plant Functional Types (PFTs) using the fractional coverage of each PFT from the Climate Change Initiative (CCI) Land Cover data. For this reason this new LAI climatology should be used in combination with the CCI PFT data, which is also provided here. Two variables are provided with the dataset containing LAI, each covering the same spatial and time extent. The PFT data provided with this dataset covers a time span of only one year, 2010. - Leaf Area Index (LAI) - LAI is an important parameter in land-surface models, influencing the surface roughness, transpiration rate and the soil water content and temperature. Numerous outputs of vegetation models such as net primary productivity (NPP), evapotranspiration (ET), light absorption by plants (FAPAR), nutrient dynamics etc., are influenced by LAI where it is a key variable in energy and water balance calculations. - Vegetation Canopy Height (H) - H plays an important role in the interface between the atmosphere and land surface and it impacts weather and climate at local to global scales by modulating aerodynamic conductance and vegetation dynamics. Therefore, H is fundamentally needed for the calculation of turbulent exchanges of energy and mass between the atmosphere and the terrestrial ecosystem. One variable is provided with the dataset containing CCI PFTs: - Fractional coverage of 5 PFTS or vegetation classes and 4 land use classes – The 5 PFTs are Broad Leaf, Needle Leaf, C3 Grass, C4 Grass and Shrub. The 4 land use classes are Urban area, Inland Water, Bare Soil and Snow/Ice. Full details about this dataset can be found at

  • These data contain 408 instances of annual model output from JULES/IMOGEN simulations, covering the period between 1850-2100. Each simulation (which corresponds to one netcdf file) provides annual average of carbon stocks of the land, atmosphere and ocean store required to calculate the anthropogenic fossil fuel emissions as the residual of the yearly changes. Also included are the global warming variables, fractional land-cover, natural wetland extent and methane (CH4) flux and the soil temperature and moisture content for additional analysis. The spatial coverage is global with spatial resolution of the data is 2.5 degrees latitude, 3.75 degrees longitude. This dataset is the model output that was used in Comyn-Platt et al (2018) [ Comyn-Platt, E. et al. (2018). Carbon budgets for 1.5 and 2C targets lowered by natural wetland and permafrost feedbacks. Nature Geoscience.] Full details about this dataset can be found at