From 1 - 2 / 2
  • Whole rock and pyrite geochemistry data from a suite of mineralised and barren rocks from Vatukoula gold mines and the Tavua caldera that hosts the ore body, in the northern part of the island of Viti Levu, Fiji. Vatukoula (also historically known as the Emperor gold mines) is a world class alkaline-associated epithermal gold deposit, noted for the abundance of gold and silver telluride minerals, and the exotic geochemistry of the volcanic host rocks (potassic shoshonites and absarokites). This dataset includes bulk geochemical analysis of whole rocks by X-ray fluorescence, and microanalysis of major and trace element of pyrite in the ore by a combination of electron beam and laser-ablation ICP-MS techniques. Pyrite geochemistry can be a useful tool in the study of epithermal ores, as it can carry evidence of boiling and phase separation, condensation, and fluid mixing. Samples were collected and analysed as part of a larger study looking at the relationship between epithermal gold deposits hosted in alkaline magmatic rocks, and an association with tellurium enrichment and precious metal tellurides. Samples were collected by D J Smith, M Keith, V V Ene, and geologists of Vatukoula Gold Mines. Analysis was carried out by M Keith and F Börner. Collected as part of the Tellurium and Selenium Cycling and Supply (TeaSe) project, part of NERC's Security of Supply of Minerals programme.

  • Pyrite samples from selected sedimentary organic-rich formations or associated igneous and metamorphic rocks were analysed by conventional S isotopic analysis. Pyrites were measured in order to provide insights into their origin. Light and variable S isotope compositions in pyrite have been used to infer the influence of sulphate-reducing bacteria (and subsequent Se precipitation by sulphate-reducing microbes), whereas heavier S isotope compositions indicate a non-biological origin (i.e. physical and chemical diagenesis).