From 1 - 9 / 9
  • This dataset contains high latitude sea level anomalies produced by DTU (Technical University of Denmark) and TUM (Technical University of Munich) as part of the ESA Sea Level CCI (Climate Change Initiative) project, covering both the Arctic and Antarctic regions. The data comprises weekly means from August 1991 to April 2017 and has been obtained using satellite altimetry data from four satellite missions: ERS1 (weeks 0 - 217); ERS2 (weeks 218 - 573); Envisat (weeks 574 - 1020); CryoSat-2 (weeks 1021 - 1336). Two datasets are available: dataset #1 is based on the ALES+ retracking without correction of the inverse barometer whereas dataset #2 has been corrected for this effect. Dataset #1 is provided both 'masked' and 'unmasked', where the masked data have been masked using sea ice concentrations downloaded from osisaf.met.no/p/ice. Dataset #2 is provided both 'masked' and 'unmasked', where the masked data have had data points retrieved over land removed from the files.

  • This dataset contains along-track sea level anomalies derived from satellite altimetry. Altimeter along-track sea level measurements from the RA2 instrument on ENVISAT and the Altika instrument on SARAL satellite missions have been processed to produce high resolution (20 Hz, corresponding to an along-track distance of ~300m) sea level anomalies, in order to provide long-term homogeneous sea level time series as close to the coast as possible in six different coastal regions (North-East Atlantic, Mediterranean Sea, Western Africa, North Indian Ocean, South-East Asia and Australia). The product benefits from the spatial resolution provided by high-rate data, the Adaptive Leading Edge Subwaveform Retracker (ALES) and the post-processing strategy of the along-track (X-TRACK) algorithm, both developed for the processing of coastal altimetry data, as well as the best possible set of geophysical corrections. The main objective of this product is to provide accurate altimeter Sea Level Anomalies (SLA) time series as close to the coast as possible in order to assess whether the coastal sea level trends experienced at the coast are similar to the observed sea level trends in the open ocean and to determine the causes of the potential discrepancies. The Envisat and SARAL/AltiKa missions have the same ground track but the temporal gap between both missions prevents from computing reliable trends during the total period between both missions. This dataset has been produced by the Climate Change Initiative Coastal Sea Level team, within the extension phase of the European Sapce Agency (ESA) Climate Change Initiative.

  • This dataset contains the Gravimetric Mass Balance (GMB) gridded product for the Antarctic Ice Sheet (AIS), generated by TU Dresden as part of the ESA Antarctic Ice Sheet Climate Change Initiatve (Antarctic_Ice_Sheet_cci). The Gravimetric Mass Balance (GMB) product for the Antarctic Ice Sheet (AIS) is based on monthly snapshots of the Earth’s gravity field provided by the Gravity Recovery and Climate Experiment (GRACE) and its follow-on satellite mission (GRACE-FO). The product relies on monthly gravity field solutions (L2) of release 06 generated at the Center for Space Research (University of Texas at Austin) and spans the period from April 2002 through July 2020. The GMB product covers the full GRACE mission period (April 2002 - June 2017) and is extended by means of GRACE-FO data starting from June 2018, thus including 187 monthly solutions. The mass change estimation is based on the tailored sensitivity kernel approach developed at TU Dresden. (Groh & Horwath, 2021) The GMB gridded product comprises time series of ice mass changes for cells of polar-stereographic grid with a sampling of 50x50 km² covering the entire AIS. A GMB basin product is also available as a separate dataset. Groh, A. & Horwath, M. (2021). Antarctic Ice Mass Change Products from GRACE/GRACE-FO Using Tailored Sensitivity Kernels. Remote Sens., 13(9), 1736. doi:10.3390/rs13091736

  • This dataset contains 17-year-long (June 2002 to May 2018 ), high-resolution (20 Hz), along-track sea level dataset in coastal zones of six regions: Mediterranean Sea, Northeast Atlantic, West Africa, North Indian Ocean, Southeast Asia and Australia. Up to now, satellite altimetry has provided global gridded sea level time series up to 10-15 km from the coast only, preventing the estimation of how sea level changes very close to the coast on interannual to decadal time scales. This dataset has been derived from the ESA SL_cci+ v1.1 dataset of coastal sea level anomalies (also available in the catalogue, DOI:10.5270/esa-sl_cci-xtrack_ales_sla-200206_201805-v1.1-202005), which is based on the reprocessing of raw radar altimetry waveforms from the Jason-1, Jason-2 and Jason-3 satellite missions to derive satellite-sea surface ranges as close as possible to the coast (a process called ‘retracking’) and optimization of the geophysical corrections applied to the range measurements to produce sea level time series. This large amount of coastal sea level estimates has been further analysed to produce the present dataset: it consists in a selection of 429 portions of satellite tracks crossing land for which valid sea level time series are provided at monthly interval together with the associated sea level trends over the 17-year time span at each along-track 20-Hz point, from 20 km offshore to the coast. The main objective of this dataset is to analyze the sea level trends close to the coast and compare them with the sea level trends observed in the open ocean and to determine the causes of the potential differences. The product has been developed within the sea level project of the extension phase of the European Space Agency (ESA) Climate Change Initiative (SL_cci+). See 'The Climate Change Coastal Sea Level Team (2020). Sea level anomalies and associated trends estimated from altimetry from 2002 to 2018 at selected coastal sites. Scientific Data (Nature), in press'. This dataset has a DOI: https://doi.org/10.17882/74354

  • This dataset contains along-track sea level anomalies derived from satellite altimetry. Altimeter along-track sea level measurements from the Jason-1, Jason -2 and Jason-3 satellite missions have been processed to produce high resolution (20 Hz, corresponding to an along-track distance of ~300m) sea level anomalies, in order to provide long-term homogeneous sea level time series as close to the coast as possible in six different coastal regions (North-East Atlantic, Mediterranean Sea, Western Africa, North Indian Ocean, South-East Asia and Australia). These six time series cover the period from 15 January 2002 to 30 May 2018. The product benefits from the spatial resolution provided by high-rate data, the Adaptive Leading Edge Subwaveform Retracker (ALES) and the post-processing strategy of the along-track (X-TRACK) algorithm, both developed for the processing of coastal altimetry data, as well as the best possible set of geophysical corrections. The main objective of this product is to provide accurate altimeter Sea Level Anomalies (SLA) time series as close to the coast as possible in order to assess whether the coastal sea level trends experienced at the coast are similar to the observed sea level trends in the open ocean and to determine the causes of the potential discrepancies. The product has been developed within the sea level project of the extension phase of the European Space Agency (ESA) Climate Change Initiative (SL_cci+). During the project, the product will be extended in spatial coverage and with additional altimeter missions. This version of the dataset is v1.1. (DOI: 10.5270/esa-sl_cci-xtrack_ales_sla-200206_201805-v1.1-202005)

  • This dataset contains the Gravimetric Mass Balance (GMB) basin product for the Antarctic Ice Sheet (AIS), generated by TU Dresden as part of the ESA Antarctic Ice Sheet Climate Change Initiatve (Antarctic_Ice_Sheet_cci). The Gravimetric Mass Balance (GMB) product for the Antarctic Ice Sheet (AIS) is based on monthly snapshots of the Earth’s gravity field provided by the Gravity Recovery and Climate Experiment (GRACE) and its follow-on satellite mission (GRACE-FO). The product relies on monthly gravity field solutions (L2) of release 06 generated at the Center for Space Research (University of Texas at Austin) and spans the period from April 2002 through July 2020. The GMB product covers the full GRACE mission period (April 2002 - June 2017) and is extended by means of GRACE-FO data starting from June 2018, thus including 187 monthly solutions. The mass change estimation is based on the tailored sensitivity kernel approach developed at TU Dresden. (Groh & Horwath, 2021) The GMB basin product provides time series of integrated mass changes for 26 drainage basins and the aggregations of the Antarctic Peninsula, East Antarctica, West Antarctica and the entire AIS. Based on the GMB basin product, ice mass balance estimates, i.e. linear trend in the change in ice mass, were derived for all drainage basins and aggregations. A gridded GMB product is also available as a separate dataset. Groh, A. & Horwath, M. (2021). Antarctic Ice Mass Change Products from GRACE/GRACE-FO Using Tailored Sensitivity Kernels. Remote Sens., 13(9), 1736. doi:10.3390/rs13091736

  • As part of the European Space Agency's (ESA) Sea Level Climate Change Initiative (CCI) project, a multi-satellite merged time series of monthly gridded Sea Level Anomalies (SLA) has been produced from satellite altimeter measurements. The Sea Level Anomaly grids have been calculated after merging the altimetry mission measurements together into monthly grids, with a spatial resolution of 0.25 degrees. This version of the product is Version 2.0. The following DOI can be used to reference the monthly Sea Level Anomaly product: DOI: 10.5270/esa-sea_level_cci-MSLA-1993_2015-v_2.0-201612 The complete collection of v2.0 products from the Sea Level CCI project can be referenced using the following DOI: 10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612 When using or referring to the Sea Level cci products, please mention the associated DOIs and also use the following citation where a detailed description of the Sea Level_cci project and products can be found: Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67-82, doi:10.5194/os-11-67-2015, 2015. For further information on the Sea Level CCI products, and to register for these projects please email: info-sealevel@esa-sealevel-cci.org

  • As part of the European Space Agency's (ESA) Sea Level Climate Change Initiative (CCI) Project, Fundamental Climate Data Records (FCDRs) have been computed for all the altimeter missions used within the project. These FCDR's consist of along track values of sea level anomalies and altimeter standards for the period between 1993 and 2015. This version of the product is v2.0. The FCDR's are mono-mission products, derived from the respective altimeter level-2 products. They have been produced along the tracks of the different altimeters, with a resolution of 1Hz, corresponding to a ground distance close to 6km. The dataset is separated by altimeter mission, and divided into files by altimetric cycle corresponding to the repetivity of the mission. When using or referring to the Sea Level cci products, please mention the associated DOIs and also use the following citation where a detailed description of the Sea Level_cci project and products can be found: Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67-82, doi:10.5194/os-11-67-2015, 2015. For further information on the Sea Level CCI products, and to register for these projects please email: info-sealevel@esa-sealevel-cci.org

  • As part of the European Space Agency's (ESA) Sea Level Climate Change Initiative (CCI) project, a multi-satellite merged time series of monthly gridded Sea Level Anomalies (SLA) has been produced from satellite altimeter measurements. The Sea Level Anomaly grids have been calculated after merging the altimetry mission measurements together into monthly grids, with a spatial resolution of 0.25 degrees. This version of the product is Version 1.1. The following DOI can be used to reference the monthly Sea Level Anomaly product: DOI: 10.5270/esa-sea_level_cci-MSLA-1993_2014-v_1.1-201512 The complete collection of v1.1 products from the Sea Level CCI project can be referenced using the following DOI:10.5270/esa-sea_level_cci-1993_2014-v_1.1-201512. When using or referring to the Sea Level cci products, please mention the associated DOIs and also use the following citation where a detailed description of the Sea Level_cci project and products can be found: Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67-82, doi:10.5194/os-11-67-2015, 2015. For further information on the Sea Level CCI products, and to register for these projects please email: info-sealevel@esa-sealevel-cci.org