From 1 - 7 / 7
  • This is the output from high-resolution model simulations of ocean conditions and melting beneath the floating part of Thwaites Glacier. The model is designed to study how these conditions change as the geometry of Thwaites Glacier evolved from 2011-2022. There is one simulation using the geometry from each year during this period, derived from satellite observations. The simulations are repeated for different ocean model forcing conditions, as described in the associated paper. PH was supported by the NERC/NSF Thwaites-MELT project (NE/S006656/1). ITGC contribution number 099. *******PLEASE BE ADVISED TO USE VERSION 2.0 DATA******* (Version 1 had the seabed bathymetry and ice shelf topography files incorrectly oriented.)

  • This is the output from high-resolution model simulations of ocean conditions and melting beneath the floating part of Thwaites Glacier. The model is designed to study how these conditions change as the geometry of Thwaites Glacier evolved from 2011-2022. There is one simulation using the geometry from each year during this period, derived from satellite observations. The simulations are repeated for different ocean model forcing conditions, as described in the associated paper. PH was supported by the NERC/NSF Thwaites-MELT project (NE/S006656/1). ITGC contribution number 099. *******PLEASE BE ADVISED TO USE VERSION 2.0 DATA******* Version 2 is available at https://doi.org/10.5285/473eb97c-63a8-4002-8b72-e7f07b2ab228. (Version 1 has the seabed bathymetry and ice shelf topography files incorrectly oriented.)

  • This dataset consists of Digital Elevation Models (DEMs) of the surface elevation of Thwaites Glacier. The region covered includes the floating area of the fast-flowing main trunk of Thwaites Glacier, sometimes referred to as Thwaites West Ice Tongue. The DEMs are derived from TanDEM-X SAR data. There are 172 individual scenes that reveal the geometric evolution of this area between 2011 and 2022. This work was supported by the NERC project CALISMO NE/P011365/1.

  • Ice sheet model runs based on the Glimmer thermo-mechanical ice sheet model. Glacial modelling was used to simulate former WAIS (West Antarctic Ice Sheet) dynamics (specifically grounding line and ice volume changes) in the Weddell Sea embayment, constrained by newly acquired field data (see related datasets).

  • Sediments cores collected aboard the RRS James Clark Ross (JR104) in the Bellingshausen Sea, 2004. This work was carried out as part of the first systematic investigation of the former ice drainage basin in the southern Bellingshausen Sea. Reconnaissance data collected on previous cruises JR04 (1993) and cruises of R/V Polarstern in 1994 and 1995 suggested that this area contained the outlet of a very large ice drainage basin during late Quaternary glacial periods. The data and samples collected allowed us to address questions about the timing and rate of grounding line retreat from the continental shelf, the dynamic character of the ice that covered the shelf, and its influence on glaciomarine processes on the adjacent continental slope.

  • Powders, solutions and residues related to erratic and bedrock samples collected in the Ellsworth Mountains during the 2005-2006 field season. For each of the rock samples analysed in the lab, a (variable) number of laboratory stages are created, including sawing and crushing residues, pure quartz separates, chemical solutions, and AMS (Accelerator Mass Spectrometry) targets.

  • Glacial geomorphological data from the Ellsworth Mountains, Weddell Sea embayment. Satellite imagery and aerial photography, ground truthing, surveying and GPS traverses were used for geomorphological mapping. Additional photographic and weathering data were used to complement the field work. The project resulted in one of the most detailed geomorphological studies of any part of the WAIS (West Antarctic Ice Sheet), as well as the most comprehensive coverage for cosmogenic isotope analysis.