From 1 - 10 / 17
  • 3D vertically-polarised shear wave (Vsv) velocity model of West Antarctic uppermost mantle structure to 200 km depth developed using data from the 2016-2018 UK Antarctic Seismic Network (UKANET) and Polar Earth Observing Seismic Network (POLENET). The model was constructed from the combination of fundamental mode Rayleigh wave phase velocity maps developed by ambient noise (periods 8-25 seconds) and earthquake data two-plane wave analysis (periods 20-143 seconds). Composite ''local'' 1D Rayleigh wave phase velocity dispersion curves (periods 8-143 s) were extracted by sampling the 2D Rayleigh wave phase velocity maps at grid node locations spanning West Antarctica spaced at 100 km. The local 1D Rayleigh wave phase velocity dispersion curves were inverted for 1D shear wave (Vsv) structure to 200 km depth, and the ensemble of 1D shear wave (Vsv) profiles were subsequently gridded to produce the 3D shear wave (Vsv) model of West Antarctica uppermost mantle structure to 200 km depth. Funding was provided by the NERC standard grant NE/L006065/1.

  • The dataset presented here contains a csv-file including the coordinates, received power of the bed reflection and the two-way travel time of the bed reflection. The X and Y coordinates are projected in EPSG:3031 - WGS 84 / Antarctic Polar Stereographic coordinate system. Data presented here have been frequency filtered and 2D migrated (using a finite difference approach and migration velocity of 0.168 m ns-1), followed by the picking of the bed reflection using ReflexW software (Sandmeier Scientific Software). The received power is calculated within a 280 ns time window centred on, and encompassing, the bed reflection (Gades et al., 2000). This work was funded within the BEAMISH project by NERC AFI award numbers NE/G014159/1 and NE/G013187/1.

  • This dataset provides a 308 year (1703-2010) annual snow accumulation record from the Ferrigno 2010 (F10) ice core. The 136 m core was drilled on the Bryan Coast in Ellsworth Land, West Antarctica, during the austral summer 2010/11. The record was measured using the summer peak in nonsea-salt (nss) SO4, in approximately January to December. Snow accumulation is converted to meters of water equivalent (weq - m) based on measured density profile and correcting for thinning using the Nye model, assuming vertical strain rate. Samples were measured at 5 cm resolution, corresponding to approximately eight samples per year. Funding was provided by the NERC grant NE/J020710/1.

  • 3D vertically-polarised shear wave (Vsv) velocity model of West Antarctic crustal structure developed using data from the 2016-2018 UK Antarctic Seismic Network (UKANET) and Polar Earth Observing Seismic Network (POLENET). Interstation Rayleigh and Love wave phase velocity dispersion measurements at periods of 8-25 seconds were extracted from seismic ambient noise cross-correlograms by automated frequency-time analysis (AFTAN). The ensemble of interstation Rayleigh wave dispersion measurements was used to develop 2D Rayleigh wave phase velocity maps of West Antarctica at periods of 8-25 seconds by Fast Marching Surface Tomography (FMST) on a grid with a node spacing of 0.75deg. ''Local'' 1D Rayleigh wave phase velocity dispersion curves were extracted by sampling the 2D Rayleigh wave phase velocity maps at grid node locations. The local 1D Rayleigh wave phase velocity dispersion curves were inverted for 1D shear wave (Vsv) structure to 40 km depth, and the ensemble of 1D shear wave (Vsv) profiles were subsequently gridded to produce the 3D shear wave (Vsv) model of West Antarctica from 10-40 km depth. Funding was provided by the NERC standard grant NE/L006065/1.

  • This dataset provides a 308 year (1702-2009) deuterium isotope record from the Ferrigno 2010 (F10) ice core. The core was drilled on the Bryan Coast in Ellsworth Land, West Antarctica, during the austral summer 2010/11. The record was measured using a Los Gatos Liquid Water Isotope Analyser at 5cm resolution, corresponding to ~14 samples per year, with annual averages calculated for January-December. Funding was provided by the NERC grant NE/J020710/1

  • This dataset contains the position and depth of four spatially-extensive Internal Reflecting Horizons (or IRHs) traced on the British Antarctic Survey''s PASIN system and NASA Operation IceBridge''s MCoRDS2 system across the Pine Island Glacier catchment. Using the WAIS Divide ice-core chronology and a 1-D steady-state model, we assign ages to our four IRHs: (R1) 2.31-2.92 ka, (R2) 4.72 +/- 0.28 ka, (R3) 6.94 +/- 0.31 ka, and (R4) 16.50 +/- 0.79 ka. This project was funded by the UK Natural Environment Research Council Grant NE/L002558/1

  • SAR-processed two-dimensional radargram data in SEG-Y format acquired from the Institute and Moller ice streams, West Antarctica between mid-December 2010 and mid-January 2011. Data were collected using the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) radar, operated at a centre frequency of 150 MHz, and installed on the BAS Twin Otter aircraft "Bravo Lima". In total, ~25,000km of aerogeophysical data were collected, with coverage extending from the ice stream grounding zone to the ice divide. A high-resolution grid, with a line-spacing of 7.5 x 25 km, was acquired over the central parts of the ice stream catchments. Data were acquired during twenty-eight survey flights (sixteen flown from remote field camp C110, ten from Patriot Hills and two "transit" flights). Funding for this data acquisition was provided by the UK NERC AFI grant NE/G013071/1. These data should be cited as follows: Siegert, Martin et al. (2017); Synthetic-aperture radar (SAR) processed airborne radio-echo sounding data from the Institute and Moller ice streams, West Antarctica, 2010-11; Polar Data Centre, Natural Environment Research Council, UK; doi:10.5285/8a975b9e-f18c-4c51-9bdb-b00b82da52b8

  • This dataset is an estimate of sub ice shelf bathymetry beneath the Thwaites, Crosson and Dotson ice shelves. The output bathymetry is derived from a new compilation of gravity data collected up to the end of the 2018/19 field season. The input gravity dataset includes airborne data from Operation Ice Bridge (OIB) and the NERC/NSF International Thwaites Glacier Collaboration (ITGC), and marine gravity from the R/V Nathaniel B. Palmer cruise NBP19-02. The recovered bathymetry was constrained by swath bathymetry and onshore airborne radio-echo depth sounding data in the surrounding area. Ice shelves mask the critical link between the ocean and cryosphere systems, and hence accurate sub ice shelf bathymetry is critical for generating reliable models of future ice sheet change. Included in the data release is the input free air gravity data, constraining bathymetry/sub-ice topography, and output gravity derived bathymetry. This work was funded by the British Antarctic Survey core program (Geology and Geophysics team), in support of the joint Natural Environment Research Council (NERC)/ National Science Foundation (NSF) International Thwaites Glacier Collaboration (ITGC). Additional specific support came from NERC Grants: NE/S006664/1 and NE/S006419/1, and NSF Grants: NSF1842064, NSFPLR-NERC-1738942, NSFPLR-NERC-1738992 and NSFPLR-NERC-1739003.

  • This dataset provides a 308 year record of methansulphonic acid (MSA) from coastal West Antarctica, representing sea ice conditions in the Amundsen-Ross Sea. Annual average MSA has been calculated from the 136 m Ferrigno ice core (F10), drilled on the Bryan Coast in Ellsworth Land, West Antarctica during the austral summer 2010/11. The sea ice extent is based on geometric mean regression of MSA flux with satellite sea ice extent from 146 degrees west. The record was measured using a Dionex ICS2500 anion system at 5 cm resolution, corresponding to approximately 14 samples a year. Funding was provided by the NERC grant NE/J020710/1.

  • High-resolution simulation of summer climate over West Antarctica using the Polar-optimised version of the Weather Research and Forecasting (WRF) model conducted at British Antarctic Survey, Cambridge, UK. Runs are conducted for summer (January-centred) 1980-2015, i.e. from December 1979 to February 2015, for December, January and February (DJF). Experiments were carried out for the NERC West Antarctic Grant (NE/K00445X/1) during 2014-2017. The project is aimed at understanding the variability and climatology over the West Antarctic ice sheet and ice shelves as well as to project the future change over the twenty-first century. The model outer domain encompasses the West Antarctic ice sheet and a large part of the surrounding ocean at 45 km horizontal grid spacing, and the nested (one-way) inner domain covers the Amundsen Sea Embayment at 15 km grid spacing. The model uses vertical eta coordinates with both domains have a model top of 50 hPa, and 30 vertical levels.