From 1 - 10 / 21
  • 3D vertically-polarised shear wave (Vsv) velocity model of West Antarctic uppermost mantle structure to 200 km depth developed using data from the 2016-2018 UK Antarctic Seismic Network (UKANET) and Polar Earth Observing Seismic Network (POLENET). The model was constructed from the combination of fundamental mode Rayleigh wave phase velocity maps developed by ambient noise (periods 8-25 seconds) and earthquake data two-plane wave analysis (periods 20-143 seconds). Composite ''local'' 1D Rayleigh wave phase velocity dispersion curves (periods 8-143 s) were extracted by sampling the 2D Rayleigh wave phase velocity maps at grid node locations spanning West Antarctica spaced at 100 km. The local 1D Rayleigh wave phase velocity dispersion curves were inverted for 1D shear wave (Vsv) structure to 200 km depth, and the ensemble of 1D shear wave (Vsv) profiles were subsequently gridded to produce the 3D shear wave (Vsv) model of West Antarctica uppermost mantle structure to 200 km depth. Funding was provided by the NERC standard grant NE/L006065/1.

  • 3D vertically-polarised shear wave (Vsv) velocity model of West Antarctic crustal structure developed using data from the 2016-2018 UK Antarctic Seismic Network (UKANET) and Polar Earth Observing Seismic Network (POLENET). Interstation Rayleigh and Love wave phase velocity dispersion measurements at periods of 8-25 seconds were extracted from seismic ambient noise cross-correlograms by automated frequency-time analysis (AFTAN). The ensemble of interstation Rayleigh wave dispersion measurements was used to develop 2D Rayleigh wave phase velocity maps of West Antarctica at periods of 8-25 seconds by Fast Marching Surface Tomography (FMST) on a grid with a node spacing of 0.75deg. ''Local'' 1D Rayleigh wave phase velocity dispersion curves were extracted by sampling the 2D Rayleigh wave phase velocity maps at grid node locations. The local 1D Rayleigh wave phase velocity dispersion curves were inverted for 1D shear wave (Vsv) structure to 40 km depth, and the ensemble of 1D shear wave (Vsv) profiles were subsequently gridded to produce the 3D shear wave (Vsv) model of West Antarctica from 10-40 km depth. Funding was provided by the NERC standard grant NE/L006065/1.

  • The dataset presented here contains a csv-file including the coordinates, received power of the bed reflection and the two-way travel time of the bed reflection. The X and Y coordinates are projected in EPSG:3031 - WGS 84 / Antarctic Polar Stereographic coordinate system. Data presented here have been frequency filtered and 2D migrated (using a finite difference approach and migration velocity of 0.168 m ns-1), followed by the picking of the bed reflection using ReflexW software (Sandmeier Scientific Software). The received power is calculated within a 280 ns time window centred on, and encompassing, the bed reflection (Gades et al., 2000). This work was funded within the BEAMISH project by NERC AFI award numbers NE/G014159/1 and NE/G013187/1.

  • This dataset provides a 308 year (1703-2010) annual snow accumulation record from the Ferrigno 2010 (F10) ice core. The 136 m core was drilled on the Bryan Coast in Ellsworth Land, West Antarctica, during the austral summer 2010/11. The record was measured using the summer peak in nonsea-salt (nss) SO4, in approximately January to December. Snow accumulation is converted to meters of water equivalent (weq - m) based on measured density profile and correcting for thinning using the Nye model, assuming vertical strain rate. Samples were measured at 5 cm resolution, corresponding to approximately eight samples per year. Funding was provided by the NERC grant NE/J020710/1.

  • This dataset provides a 308 year (1702-2009) deuterium isotope record from the Ferrigno 2010 (F10) ice core. The core was drilled on the Bryan Coast in Ellsworth Land, West Antarctica, during the austral summer 2010/11. The record was measured using a Los Gatos Liquid Water Isotope Analyser at 5cm resolution, corresponding to ~14 samples per year, with annual averages calculated for January-December. Funding was provided by the NERC grant NE/J020710/1

  • This dataset contains locations and orientations of striations observed on bedrock surfaces in the Hudson Mountains, West Antarctica. These were collected in December 2019 by Joanne S Johnson during a British Antarctic Survey-supported geological field campaign, as part of the International Thwaites Glacier Collaboration (funded by NERC and NSF). Funding: NERC grant: NE/S006710/1

  • High-resolution simulation of summer climate over West Antarctica using the Polar-optimised version of the Weather Research and Forecasting (WRF) model conducted at British Antarctic Survey, Cambridge, UK. Runs are conducted for summer (January-centred) 1980-2015, i.e. from December 1979 to February 2015, for December, January and February (DJF). Experiments were carried out for the NERC West Antarctic Grant (NE/K00445X/1) during 2014-2017. The project is aimed at understanding the variability and climatology over the West Antarctic ice sheet and ice shelves as well as to project the future change over the twenty-first century. The model outer domain encompasses the West Antarctic ice sheet and a large part of the surrounding ocean at 45 km horizontal grid spacing, and the nested (one-way) inner domain covers the Amundsen Sea Embayment at 15 km grid spacing. The model uses vertical eta coordinates with both domains have a model top of 50 hPa, and 30 vertical levels.

  • This dataset contains geomorphological data (measurements of size, shape, long axis orientation and weathering characteristics) on 90 erratic cobbles collected from the Hudson Mountains in West Antarctica. These were collected during three field campaigns, as follows: 1) 75 erratic cobbles collected by Joanne S Johnson during a British Antarctic Survey-supported geological field campaign undertaken in November-December 2019, as part of the International Thwaites Glacier Collaboration (funded by NERC and NSF). 2) 13 cobbles collected by James A Smith (British Antarctic Survey) in February and March 2010 during RV Polarstern cruise ANT XXVI/3, and 3) a further two cobbles collected in March 2006 by Johnson during RV Polarstern cruise ANT XXIII/4. These cobbles were all collected for surface exposure dating. Funding: NERC grant: NE/S006710/1

  • Point data measurements of ice surface, ice base and lake bed elevation are given from Subglacial Lake Ellsworth (SLE), West Antarctica. The data were acquired during the austral summer of 2007-2008. Five seismic reflection lines were acquired over SLE, with surface elevation determined by dual frequency GPS. Funding was provided by NERC AFI, award numbers NE/D009200/1, NE/D008638/1 and NE/D008751/1. Logistics support: British Antarctic Survey. Equipment support: NERC Geophysical Equipment Facility (loan numbers 838 and 870).

  • Dual-frequency GPS data from a single receiver installed on the surface of Rutford Ice Stream in West Antarctica. The instrument was operated from late 2004 to early 2007. Gaps in the data set occur, through periods of power loss in the winters and during station relocations. Funding was provided by NERC Antarctic Funding Initiative (AFI) GR3/G005, NERC under the British Antarctic Survey National Capability programme, Polar Science for Planet Earth, Leverhulme Trust Fellowship (to T Murray), and RCUK Academic Fellowship (to M A King).