From 1 - 10 / 18
  • Seventy-nine Antarctic ice core snow accumulation records were gathered as part of a community led project coordinated by the PAGES Antarctica 2k working group. Individual ice core records (kg m2 yr-1) were normalised relative to a reference period (1960-1990). The normalised records were separated into seven geographical regions and averaged together to form the regional composites. The seven geographical regions are: East Antarctica; Wilkes Land Coast; Weddell Sea Coast; Antarctic Peninsula; West Antarctic Ice Sheet; Victoria Land; and Dronning Maud Land. Full data description and methods can be found in Thomas et al., 2017. This record also includes the original data, from which the composite records were produced. This dataset represents an updated version of another published dataset. The update was necessary due to erroneous data contained in the files. Please use this corrected dataset in preference to the other one.

  • Seventy-nine Antarctic ice core snow accumulation records were gathered as part of a community led project coordinated by the PAGES Antarctica 2k working group. Individual ice core records (kg m2 yr-1) were normalised relative to a reference period (1960-1990). The normalised records were separated into seven geographical regions and averaged together to form the regional composites. The seven geographical regions are: East Antarctica; Wilkes Land Coast; Weddell Sea Coast; Antarctic Peninsula; West Antarctic Ice Sheet; Victoria Land; and Dronning Maud Land. Full data description and methods can be found in Thomas et al., 2017. This record also includes the original data, from which the composite records were produced. Due to erroneous data contained in the files, this dataset has been superseded by a corrected version. Please use that corrected dataset in preference to this one to avoid the problem. The DOI for the updated data is: 10.5285/cc1d42de-dfe6-40aa-a1a6-d45cb2fc8293

  • This dataset provides a 308 year (1703-2010) annual snow accumulation record from the Ferrigno 2010 (F10) ice core. The 136 m core was drilled on the Bryan Coast in Ellsworth Land, West Antarctica, during the austral summer 2010/11. The record was measured using the summer peak in nonsea-salt (nss) SO4, in approximately January to December. Snow accumulation is converted to meters of water equivalent (weq - m) based on measured density profile and correcting for thinning using the Nye model, assuming vertical strain rate. Samples were measured at 5 cm resolution, corresponding to approximately eight samples per year. Funding was provided by the NERC grant NE/J020710/1.

  • This dataset provides a 308 year (1702-2009) deuterium isotope record from the Ferrigno 2010 (F10) ice core. The core was drilled on the Bryan Coast in Ellsworth Land, West Antarctica, during the austral summer 2010/11. The record was measured using a Los Gatos Liquid Water Isotope Analyser at 5cm resolution, corresponding to ~14 samples per year, with annual averages calculated for January-December. Funding was provided by the NERC grant NE/J020710/1

  • A record of the oxygen-isotope ratios and net accumulation from an ice core drilled on Dyer Plateau in the Antarctic Peninsula is presented. This 233 m long ice core was drilled in the southern summer season of 1989/90. The isotope data covers the years 1505 to 1988. The snow accumulation data covers 1840 to 1988.

  • Young Island is a new ice core drilling site uniquely positioned to give insight into the (sub-)Antarctic climate. This dataset contains four preliminary dating approaches that lay the foundation for the age scale of the Young Island ice core presented in Moser et al. (2021). Funding was provided to SubICE by Ecole Polytechnique Federale de Lausanne, the Swiss Polar Institute, and Ferring Pharmaceuticals Inc (grant no. SubICE). ERT received core funding from NERC to the British Antarctic Survey''s Ice Dynamics and Palaeoclimate programme. DEM was supported by BAS, Cambridge, and the NERC C-CLEAR doctoral training programme (grant no. NE/S007164/1). JBP received grant funding from the Australian Government.

  • This dataset provides an annual snow accumulation record from the Gomez (GZ07) ice core, dating back to the 1850s. The 136 m core was drilled on the South-western Antarctic Peninsula, during January 2007. The annual accumulation record was derived using two methods: a winter-winter value determined from the winter trough in H2O2 and nonsea-salt (nns) SO4 and a summer-summer value based on the summer peak in H2O2 and nssSO4. Snow accumulation is converted to meters of water equivalent (weq - m) based on measured density profile and correcting for thinning using the Nye model, assuming a linear vertical strain rate through the total depth of the core. The samples were analysed at very high resolution (approximately 10 mm, average 90 samples per year) using the Continuous Flow Analysis with Trace Elements-Dual (CFA-TED) method. The temporal length of the core is 152 years, encompassing 1855-2006 and the estimated uncertainty in the dating is plus/minus 1 year from 1855 to 1875 and less than 1 year from 1875 to 2006.

  • Here we provide the Palmer ice core Water-stable isotope (d18O, dD), sodium (23Na), and magnesium (24Mg) palaeo archives. The Palmer drill site (73.86 S, 65.46 W, 1897 m a.s.l.) is located on the southern part of the Antarctic Peninsula, Palmer Land. The core, firn and ice, were drilled in December 2012 to a depth of 133 m below the snow surface. The Palmer ice core covers 391 years, 1621-2011 C.E. The data were measured on the British Antarctic Survey Continuous Flow Analysis system in Cambridge, UK. Data is given both on depth and temporal (annual means) scales. The d18O and dD records were measured on a CFA laser spectroscopy system and the 23Na and 24Mg data were measured on the CFA ICP-MS setup. The ice core drilling and analysis were funded by the British Antarctic Survey, Natural Environment Research Council (NERC, Cambridge, UK), part of UK research and innovation and NERC grant NE/J020710/1. The Palmer analysis was funded by Haus der Kulturen der Welt (HKW, Berlin, Germany), in collaboration with the Anthropocene working group (AWG).

  • Global monthly outputs of orography, surface air temperature and water stable isotopes (d18O) were run by the isotope-enabled atmosphere/ocean coupled model HadCM3 for the last interglacial (128 ka). An ensemble of ten idealised Antarctic Ice Sheet (AIS) simulations were processed, included a pre-industrial and a last interglacial control simulations. The eight other simulations used changed topography of the AIS relative to Dome C to ensure the preservation of the atmospheric pathways. The simulations were run 100 years and the last 50 years were used for the analyses. This work was funding through the European Research Council under the Horizon 2020 research and innovation programme (grant agreement No 742224, WACSWAIN) and NERC grant NE/P009271/1.

  • We present the age scales for three Antarctic Peninsula (AP) ice cores: Palmer, Rendezvous, and Jurassic. The three age scales are all from intermediate-depth cores, in the 133-141 m depth range. The Palmer age scale covers 390 years, 1621-2011 C.E., and is from one of the oldest AP cores. Rendezvous and Jurassic are from lower elevation high-snow accumulation sites and therefore cover shorter intervals, 1843-2011 C.E. and 1874-2011 C.E., respectively. The Palmer, Rendezvous, and Jurassic cores were all drilled in November-December 2012 using the British Antarctic Survey (BAS) electromechanical dry drill (without drill fluid). Water isotopes and the chemical species used to establish the age scales were measured in the ice core labs at BAS (Cambridge, UK) using Continuous Flow Analysis (CFA) or from melted discrete cut ice samples. The annual-layer markers for dating of the cores were primarily determined using nssSO4 and H2O2 summer peaks, with d18O and MSA as additional support. This research effort was carried out by the BAS Ice Core group and the established age scales will provide the foundation for multiple upcoming projects. The ice core drilling and analysis was funded by the British Antarctic Survey, Natural Environment Research Council (NERC, Cambridge, UK), part of UK research and innovation and NERC grant [NE/J020710/1]. Palmer analysis was funded by Haus der Kulturen der Welt (HKW, Berlin, Germany), in collaboration with the Anthropocene working group (AWG).