From 1 - 10 / 15
  • Seventy-nine Antarctic ice core snow accumulation records were gathered as part of a community led project coordinated by the PAGES Antarctica 2k working group. Individual ice core records (kg m2 yr-1) were normalised relative to a reference period (1960-1990). The normalised records were separated into seven geographical regions and averaged together to form the regional composites. The seven geographical regions are: East Antarctica; Wilkes Land Coast; Weddell Sea Coast; Antarctic Peninsula; West Antarctic Ice Sheet; Victoria Land; and Dronning Maud Land. Full data description and methods can be found in Thomas et al., 2017. This record also includes the original data, from which the composite records were produced. Due to erroneous data contained in the files, this dataset has been superseded by a corrected version. Please use that corrected dataset in preference to this one to avoid the problem. The DOI for the updated data is: 10.5285/cc1d42de-dfe6-40aa-a1a6-d45cb2fc8293

  • Seventy-nine Antarctic ice core snow accumulation records were gathered as part of a community led project coordinated by the PAGES Antarctica 2k working group. Individual ice core records (kg m2 yr-1) were normalised relative to a reference period (1960-1990). The normalised records were separated into seven geographical regions and averaged together to form the regional composites. The seven geographical regions are: East Antarctica; Wilkes Land Coast; Weddell Sea Coast; Antarctic Peninsula; West Antarctic Ice Sheet; Victoria Land; and Dronning Maud Land. Full data description and methods can be found in Thomas et al., 2017. This record also includes the original data, from which the composite records were produced. This dataset represents an updated version of another published dataset. The update was necessary due to erroneous data contained in the files. Please use this corrected dataset in preference to the other one.

  • These 21 Last Interglacial (LIG) summer surface air temperature (SSAT) observations were compiled to assess LIG Arctic sea ice (Guarino et al 2020). Twenty of the observations were also previously used in the IPCC-AR5 report. Each observation is thought to be of summer LIG air temperature anomaly relative to present day and is located in the circum-Arctic region. All sites are from north of 51N. There are 7 terrestrial based temperature records; 8 lacustrine records; 2 marine pollen-based records; and 3 ice core records included in the original compilation. This compilation includes 1 additional ice core record. This work was funded by NERC standard research grant nos. NE/P013279/1 and NE/P009271/1.

  • Ground truth measurements in the form of snow/ice cores were obtained from three sites in 2006: Rothschild Island, Latady Island and Smyley Island. The sites selected corresponded to the position of Automatic Weather Stations (AWS) deployed during the previous season. At both the Rothschild Island and Smyley Island sites the AWS - due to an unprecedented amount of snowfall - had been buried. Therefore, two cores, 8m and 12m in length, were obtained from the approximate position of the AWS, in addition to the sampling of a snow pit. At the Latady Island site, the top 60cm of the 5m AWS was protruding above the surface - again, due to an unprecedented amount of snowfall. A diagonally descending trench was dug to recover the AWS and two cores were collected at this site. This work was carried out as part of a project to understand how air mass origin and meteorology affect the mass accumulation of snow in areas of the Antarctic Peninsula, and how the atmosphere''s properties are preserved in the snow, Photographs of the expedition showing the ground layout, the situation of the cores and what was done when they were gathered are available and stored with the data.

  • This data compilation is a collaborative effort by the CLIVASH2k (Climate Variability in Antarctica and the Southern Hemisphere over the past 2000 years) working group, part of the PAGES2k network. The database is a compilation of sodium and sulphate records from Antarctic ice cores spanning the past 2000 years, and contains a combination of published records (sourced from public archives), and unpublished data submitted to the CLIVASH2k call. All data are provided as annual averages (Jan-Dec). This database includes the annually resolved section of each original dataset (in the annual_resolution folder) and the coarser than annual sections (in the coarse_resolution folder). Annual averages for the oldest and most recent years were only included if the available data covered more than half of the year. All concentration values are presented in parts per billion (ppb). All flux values are presented in ppb by kilogram per square meter (ppb kg m-2). Data for each species are contained in separate CSV files; Sodium concentration (Na_concentration), Sodium flux (Na_flux), Sulphate concentration (SO4_concentration), Sulphate flux (SO4_flux), Excess Sulphate (xsSO4), Excess Sulphate flux (xsSO4_flux). Each file contains the data for all sites. The Excess Sulphate and Excess Sulphate flux calculations assume that all Na comes from the ocean (according to the standard seawater ion ratio as in [Holland, 1978]). Data were submitted in both the ionic (e.g. SO42-) and elemental forms (S). Elemental S has been converted to sulphate (SO42-) by multiplying by three. A data description publication accompanies this database: Thomas et al., The CLIVASH2k ice core chemistry database: an Antarctic compilation of sodium and sulphate records spanning the past 2000 years. Earth System Science Data. This database was created with the support of the CLIVASH2k project.

  • This dataset presents the microparticle and ion fluxes from a set of ice cores from the Antarctic Peninsula and Ellsworth Land, as presented in Tetzner et al. (2022). Microparticle (MPC_flux) and ionic (nssCa+2_flux, nssK+_flux, ssNa+_flux, MSA_flux) data are provided as annual fluxes for the 1992-2019 CE interval. Annual fluxes were calculated as winter-to-winter averages. Data points represent the annual austral winter-to-winter average and are presented over the correspondent austral summer. The dataset comprises timeseries CSV files. The first column represents years between 1992 and 2019 CE, and the remaining columns represent annual flux data as the number of microparticles (particles) or ion concentration (ppb), multiplied by annual snow accumulation (kg m-2), listed for each ice core site alphabetically (Jurassic (JUR), Sherman Island (SHIC) and Sky-Blu (SKBL)). This dataset was created with the support of the Comision Nacional de Investigacion Cientifica y Tecnologica (grant number 72180432).

  • Young Island is a new ice core drilling site uniquely positioned to give insight into the (sub-)Antarctic climate. This dataset contains four preliminary dating approaches that lay the foundation for the age scale of the Young Island ice core presented in Moser et al. (2021). Funding was provided to SubICE by Ecole Polytechnique Federale de Lausanne, the Swiss Polar Institute, and Ferring Pharmaceuticals Inc (grant no. SubICE). ERT received core funding from NERC to the British Antarctic Survey''s Ice Dynamics and Palaeoclimate programme. DEM was supported by BAS, Cambridge, and the NERC C-CLEAR doctoral training programme (grant no. NE/S007164/1). JBP received grant funding from the Australian Government.

  • This dataset provides an annual isotope record from the Gomez (GZ07) ice core, dating back to the 1850s. The 136 m core was drilled on the South-western Antarctic Peninsula, during January 2007. We present a new 150-year, high-resolution, stable isotope record (delta-O-18) from the Gomez ice core, drilled on the data sparse south western Antarctic Peninsula. The record is highly correlated with satellite-derived temperature reconstructions and instrumental records from Faraday station on the north west coast, thus making it a robust proxy for local and regional temperatures since the 1850s.

  • This dataset contains a subset of the ice core data for the ISOL-ICE core recovered from Dronning Maud Land, Antarctica in January 2017 (https://doi.org/10.5285/9c972cfb-0ffa-4144-a943-da6eb82431d2). The subset reported here contains ice core data from the 1455 - 1227 AD period (60.80 - 79.45 m depth) and covers the volcanic eruption of Samalas, Indonesia in 1259. The ice core was dated by annual layer counting and identifying volcanic horizons as fixed time markers. Here we report i) the age-depth model over the 1455 - 1227 AD period, ii) high-resolution nitrate stable isotopic composition of discrete ice core samples, and iii) nitrate, sodium and magnesium mass concentrations and electrolytic meltwater conductivity from continuous flow analysis (CFA). Funding was provided by the NERC grant NE/N011813/1.

  • Here we provide the Palmer ice core Water-stable isotope (d18O, dD), sodium (23Na), and magnesium (24Mg) palaeo archives. The Palmer drill site (73.86 S, 65.46 W, 1897 m a.s.l.) is located on the southern part of the Antarctic Peninsula, Palmer Land. The core, firn and ice, were drilled in December 2012 to a depth of 133 m below the snow surface. The Palmer ice core covers 391 years, 1621-2011 C.E. The data were measured on the British Antarctic Survey Continuous Flow Analysis system in Cambridge, UK. Data is given both on depth and temporal (annual means) scales. The d18O and dD records were measured on a CFA laser spectroscopy system and the 23Na and 24Mg data were measured on the CFA ICP-MS setup. The ice core drilling and analysis were funded by the British Antarctic Survey, Natural Environment Research Council (NERC, Cambridge, UK), part of UK research and innovation and NERC grant NE/J020710/1. The Palmer analysis was funded by Haus der Kulturen der Welt (HKW, Berlin, Germany), in collaboration with the Anthropocene working group (AWG).