EARTH SCIENCE > Cryosphere > Glaciers/Ice Sheets > Glacier Elevation/Ice Sheet Elevation
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Update frequencies
Resolution
-
A digital elevation model of the bed of Rutford Ice Stream, Antarctica, derived from radio-echo sounding data. The data cover an 18 x 40 km area immediately upstream of the grounding line of the ice stream. This area is of particular interest because repeated seismic surveys have shown that rapid erosion and deposition of subglacial sediments has taken place. The bed topography shows a range of different subglacial landforms including mega-scale glacial lineations, drumlins and hummocks. This dataset will form a baseline survey which, when compared to future surveys, should reveal how active subglacial landscapes change over time. The dataset comprises observed ice thickness data, an interpolated bed elevation grid, observed surface elevation data and a surface elevation grid.
-
A time series of the mean surface elevation along a transect across Kangerdlugssuaq Glacier from Feb 2012 to May 2018. Funding: Data were processed under NERC project CALISMO NE/P011365/1. Data were acquired under NERC project NE/I007148/1. Data were supplied by DLR.
-
This dataset contains bed, surface elevation and ice thickness measurements from the Recovery/Slessor/Bailey Region, East Antarctica. Radar data was collected using the 150MHz PASIN radar echo sounding system (Corr et al., 2007) deployed on a British Antarctic Survey (BAS) Twin Otter during the ICEGRAV-2013 airborne geophysics campaign (Forsberg et al., 2018). Data is identified by flight and are available in both Geosoft database (.gdb) and ASCII file formats (.xyz).
-
These files are gridded topography, rates of surface elevation change, and errors as 500m and 1km posting determined from surface elevation measured by swath processing of data acquired by the interferometric radar altimeter CryoSat-2. The gridded products cover the Greenland Ice Sheet between 2011 and 2016. These data have been processed by the University of Edinburgh and are made publicly available as part of a European Space Agency funded project involving the University of Edinburgh, isardSat UK, University of Leeds-CPOM, ENVEO. Gridded elevation and elevation change over the CryoSat-2 LRM sector of the Greenland Ice Sheet are provided by CPOM. This dataset is part of ESA''s CryoTop Evolution project.
-
This data set contains bed and surface elevation picks derived from airborne radar collected during the WISE/ISODYN project. This collaborative UK/Italian project collected ~ 61000 line km of new aerogeophysical data during the 2005/2006 austral summer, over the previously poorly surveyed Wilkes subglacial basin, Dome C, George V Land and Northern Victoria Land.
-
These files are surface elevation determined from swath processing of data acquired by the interferometric radar altimeter CryoSat-2. The data have been collected and processed over the Greenland Ice Sheet between 2011 and 2016. These data have been processed by the University of Edinburgh and are made publicly available as part of the European Space Agency funded CryoSat+ CryoTop Evolution STSE Study (ESA Contract 4000116874) involving the University of Edinburgh, isardSat UK, University of Leeds-CPOM, ENVEO.
-
The Antarctic mass trends have been collated from a combination of different remote sensing datasets. These are trends of yearly elevation changes over Antarctica for the period 2003-2013 due to the different geophysical processes driving changes in Antarctica: ice dynamics, surface mass balance and glacio-isostatic adjustment (GIA). Net trends can be easily calculated by adding together surface and ice dynamics trends. 20 km gridded datasets have been produced for each process, per year (except the GIA solution which is time-invariant). To convert elevation to mass trends, we also provide the density fields for surface (SMB) and GIA processes used in Martin-Espanol et al (2016). These can be directly multiplied by the dh/dt. To convert dh/dt from ice dynamics, simply multiply by the density of ice. Mass smb = dh/dt smb * d surf Mass ice = dh/dt ice * d ice (not provided) Mass gia = dh/dt gia * d rock NERC grant: NE/I027401/1
-
These files are surface elevation determined from swath processing of data acquired by the interferometric radar altimeter CryoSat-2. The data have been collected and processed over the Antarctic Ice Sheet between 2011 and 2016. These data have been processed by the University of Edinburgh and are made publicly available as part of the European Space Agency funded project CryoTop and CryoTop Evolution involving the University of Edinburgh, isardSat UK, University of Leeds-CPOM, ENVEO.
-
During the austral summer of 2015/16, a major international collaboration funded by the European Space Agency (ESA) and with in-kind contribution from the British Antarctic Survey, the Technical University of Denmark (DTU), the Norwegian Polar Institute (NPI) and the US National Science Foundation (NSF), acquired ~38,000 line km of aerogeophysical data. The primary objective of the POLARGAP campaign was to carry out an airborne gravity survey covering the southern polar gap of the ESA gravity field mission GOCE, beyond the coverage of the GOCE orbit (south of 83.5degS), however aeromagnetics and ice-penetrating radar data were also opportunistically acquired. This survey covers the South Pole and Recovery Lakes, as well as parts of the Support Force, Foundation and Recovery Glaciers. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an air-sea gravity meter, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data. This is Version 2 of the dataset. This version differs from Version 1, as follows: 1. The variables "fast_time" and "UTC_time_layerData" have been updated due to errors found. The error in the fast_time variable related to an error in the sampling frequency of the system, which should have been 24 MHz instead of 22MHz. This has been updated. The error in the "UTC_time_layerData" related to a rounding issue which affected the precision of this variable. This has been updated. 2. The units in the "surface_pick_layerData" and the "bed_pick_layerData" variables should have been "samples relative to the BAS radar system", instead of "microseconds". This has been corrected. 3. The metadata in this DMS entry and in the NetCDF files has also been updated. Mainly, the sampling frequency has been modified from 22 MHz to 24 MHz to reflect the radar system characteristics. This also affected the value provided for the radar system resolution and sampling interval, which have both been updated in the metadata. 4. The SEGY sampling interval value (byte numbers: 117-118 (SI)) has also been updated to reflect the change in sampling frequency mentioned above. All other variables remain unchanged. Note that these changes do not affect the radar data or the associated radar-derived data in the files.
-
Three separate airborne radar surveys were flown during the austral summer of 2016/17 over the Filchner Ice Shelf and Halley Ice Shelf (West Antarctica), and over the outlet glacier flows of the English Coast (western Palmer Land, Antarctic Peninsula) during the Filchner Ice Shelf System (FISS) project. This project was a NERC-funded (grant reference number: NE/L013770/1) collaborative initiative between the British Antarctic Survey, the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. The 2016/17 aerogeophysics surveys acquired a total of ~26,000 line km of aerogeophysical data. The FISS survey consisted of 17 survey flights totalling ~16,000 km of radar data over the Support Force, Recovery, Slessor, and Bailey ice streams of the Filchner Ice Shelf. The Halley Ice Shelf survey consisted of ~4,600 km spread over 5 flights and covering the area around the BAS Halley 6 station and the Brunt Ice Shelf. The English Coast survey consisted of ~5,000 km spread over 7 flights departing from the Sky Blu basecamp and linking several outlet glacier flows and the grounding line of the western Palmer Land, including the ENVISAT, CRYOSAT, GRACE, Landsat, Sentinel, ERS, Hall, Nikitin and Lidke ice streams. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an iMAR strapdown gravity system, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data. This is Version 2 of the dataset. This version differs from Version 1, as follows: 1. The variables "fast_time" has been updated due to errors found. The error in the variable related to an error in the sampling frequency of the system, which should have been 24 MHz instead of 22MHz. This has been updated. 2. The units in the "surface_pick_layerData" and the "bed_pick_layerData" variables should have been "samples relative to the BAS radar system", instead of "microseconds". This has been corrected. 3. The metadata in this DMS entry and in the NetCDF files has also been updated. Mainly, the sampling frequency has been modified from 22 MHz to 24 MHz to reflect the radar system characteristics. This also affected the value provided for the radar system resolution and sampling interval, which have both been updated in the metadata. 4. The SEGY sampling interval value (byte numbers: 117-118 (SI)) has also been updated to reflect the change in sampling frequency mentioned above. All other variables remain unchanged. Note that these changes do not affect the radar data or the associated radar-derived data in the files.