From 1 - 4 / 4
  • We report sedimentary coatings and fish teeth neodymium isotope values – tracers for water-mass mixing – from deep-water International Ocean Discovery Program (IODP) Site U1438 (4.7 km water depth) in the Philippine Sea, northwest Pacific Ocean. The time period encompasses the last 20 million years.

  • Benthic stable isotope (carbon and oxygen) data from IODP Site U1445. Generated by Yasmin Bokhari-Friberg, supervisied by Kate Littler and Pallavi Anand.

  • The data comprises a multi-proxy dataset of 49 samples spanning approximately the time interval from 1.8-3.9 Ma according to the currently available shipboard age model from offshore the Limpopo River, southwest Indian Ocean. Data includes major and trace element chemistry and K-Ar ages from the clay fraction (<2um), radiogenic isotope geochemistry, stable isotopes of planktonic foraminifera Globigerinoides ruber. The data set is now online with a citable DOI, although with an embargo till September 2019, http://dx.doi.org/10.1594/IEDA/100719

  • The datasets provide neodymium and strontium isotope composition of Pliocene detrital sediments and additional regional core top samples, diatom species counts and biogenic opal content. These data related to Pliocene marine sediments recovered offshore of Adelie Land, East Antarctica from IODP (International Ocean Discovery Program) Site 318-U1361. The data reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate increases in Southern Ocean surface water productivity, associated with elevated circum Antarctic temperatures. The geochemical provenance of detrital material deposited during these warm intervals suggests active erosion of continental bedrock from within the Wilkes Subglacial Basin, an area today buried beneath the East Antarctic ice sheet. This erosion is interpreted to be associated with retreat of the ice sheet margin several hundreds of kilometres inland and concludes that the East Antarctic ice sheet was sensitive to climatic warmth during the Pliocene.