From 1 - 10 / 18
  • During the austral summer of 2001/02 five thousand line kilometres of airborne radio echo sounding and aeromagnetic data were collected in the region of three tributaries of Slessor Glacier, East Antarctica, which drains into the Filchner Ice Shelf. We present here the processed bed elevation picks from airborne radar depth sounding acquired using the BAS aerogeophysicaly equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data. Data were collected as part of UK Natural Environment Research Council (NERC) grant GR3/AFI2/65

  • A British Antarctic Survey Twin Otter and survey team acquired 15,500 line-km of aerogeophysical data during the 2001/02 Antarctic field season along a 1-km line spacing grid with tie-lines 8 km apart. Twenty-five flights were flown from the South African base SANAE, for a total of 100 survey hours. We present here the processed bed elevation picks from airborne radar depth sounding. The airborne-radio echosounding data were collected for 5 flights, to image ice-thickness and bedrock configuration. Data are provided as XYZ ASCII line data. This high-resolution aerogeophysical survey was part of the "Magmatism as a Monitor of Gondwanabreak-up" project (MAMOG) of the British Antarctic Survey, which included new geochemical investigations, structural geology, geochronology, and AMS studies over western Dronning Maud Land.

  • During the 2010/2011 Antarctic field season a collaborative NERC AFI (Antarctic Funding Initiative) project studying the basal boundary conditions of the Institute & Moller ice streams, West Antarctica, collected ~25,000 km of new high quality aerogeophysics data. Data were acquired using the BAS PASIN depth sounding radar mounted in the BAS aerogeophysically equipped Twin Otter "Bravo Lima". Data are provided as XYZ ASCII line data. Data were collected as part of the UK Natural Environment Research Council AFI grant NE/G013071/1.

  • During the 2001-02 field season a regional survey was flown on a 10 km line spacing grid over the drainage basin of the Rutford Ice stream (West Antarctica), as part of the TORUS (Targeting ice stream onset regions and under-ice systems) project. We present here the bed elevation picks from airborne radar depth sounding collected using the "BAS-built" radar depth sounding system mounted on the BAS aerogeophysical equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data

  • An airborne radar survey was flown during the austral summer of 2015/16 over the Foundation Ice Stream, Bungenstock Ice Rise, and the Filchner ice shelf as part of the 5-year Filchner Ice Shelf System (FISS) project. This project was a NERC-funded (grant reference number: NE/L013770/1) collaborative initiative between the British Antarctic Survey, the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. The 2015/16 aerogeophysics survey acquired ~7,000 line km of aerogeophysical data with a particular focus on the Foundation Ice Stream. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • This dataset contains bed and surface elevation picks derived from airborne radar collected in 2016/17 over the Filchner Ice Shelf and Halley Ice Shelf (West Antarctica) as part of the 5-year Filchner Ice Shelf System (FISS) project funded by NERC (grant reference number: NE/L013770/1) and awarded to the British Antarctic Survey with contribution from the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute. The aim of this project was to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. This collaborative initiative collected ~15,000 line-km of new aerogeophysical data using the 150MHz PASIN radar echo sounding system (Corr et al., 2007) deployed on a British Antarctic Survey (BAS) Twin Otter. The majority of flights were flown as part of FISS over the Support Force, Recovery, Slessor, and Bailey ice streams. Separate flights over Halley 6 research station and Brunt Ice Shelf were also collected as part of this season. The bed and surface elevation picks for the English Coast part of this season are available at: https://doi.org/10.5285/e07d62bf-d58c-4187-a019-59be998939cc.

  • Three separate airborne radar surveys were flown during the austral summer of 2016/17 over the Filchner Ice Shelf and Halley Ice Shelf (West Antarctica), and over the outlet glacier flows of the English Coast (western Palmer Land, Antarctic Peninsula) during the Filchner Ice Shelf System (FISS) project. This project was a NERC-funded (grant reference number: NE/L013770/1) collaborative initiative between the British Antarctic Survey, the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. The 2016/17 aerogeophysics surveys acquired a total of ~26,000 line km of aerogeophysical data. The FISS survey consisted of 17 survey flights totalling ~16,000 km of radar data over the Support Force, Recovery, Slessor, and Bailey ice streams of the Filchner Ice Shelf. The Halley Ice Shelf survey consisted of ~4,600 km spread over 5 flights and covering the area around the BAS Halley 6 station and the Brunt Ice Shelf. The English Coast survey consisted of ~5,000 km spread over 7 flights departing from the Sky Blu basecamp and linking several outlet glacier flows and the grounding line of the western Palmer Land, including the ENVISAT, CRYOSAT, GRACE, Landsat, Sentinel, ERS, Hall, Nikitin and Lidke ice streams. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an iMAR strapdown gravity system, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • An airborne radar survey was flown as part of the GRADES-IMAGE project funded by BAS over the Antarctic Peninsula, Ellsworth Mountains and Filchner-Ronne Ice Shelf (also including the Evans Ice stream and Carson Inlet) mainly to image englacial layers and bedrock topography during the 2006/07 field season. Operating from temporary field camps at Sky Blu, Partiot Hills and out of RABID depot (Rutford Ice Stream), we collected ~27,550 km of airborne radio-echo sounding data over 100 hours of surveying. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, and an ice-sounding radar system (PASIN). Note that there was no gravimetric element to this survey. We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • During the austral summer of 2015/16, a major international collaboration funded by the European Space Agency (ESA) and with in-kind contribution from the British Antarctic Survey, the Technical University of Denmark (DTU), the Norwegian Polar Institute (NPI) and the US National Science Foundation (NSF), acquired ~38,000 line km of aerogeophysical data. The primary objective of the POLARGAP campaign was to carry out an airborne gravity survey covering the southern polar gap of the ESA gravity field mission GOCE, beyond the coverage of the GOCE orbit (south of 83.5degS), however aeromagnetics and ice-penetrating radar data were also opportunistically acquired. This survey covers the South Pole and Recovery Lakes, as well as parts of the Support Force, Foundation and Recovery Glaciers. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an air-sea gravity meter, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data. NOTE: Please note that an issue with the floats in the NetCDF variable "UTC_time_layerData" has resulted in this variable having rounded up decimal numbers. In order to fix this issue, we advise users who need this variable to download the separately published bed pick data for the POLARGAP survey (doi: https://doi.org/10.5285/d55e87dd-a74d-4182-be99-93ab805103ab) and use the ''DateTime_YYYY-MM-DD_HH:MM:SS.S'' column which is the same as the one used to produce the NetCDF.

  • An airborne radar survey was flown as part of the seven nation Antarctica''s Gamburtsev Province (AGAP) expedition over the Gamburtsev Subglacial Mountains, Dome A, and the interior of East Antarctica during the International Polar Year 2007-2009. Operating from field camps located on either side of Dome A (namely AGAP-N and AGAP-S), we collected ~120,000 km (equivalent to 180,000 km2) of airborne survey data using two Twin Otter aircrafts - one from BAS and one from the United States Antarctic Program (USAP). The aircrafts were equipped with dual-frequency carrier-phase GPS for navigation, laser ranging systems, magnetometers, gravity meters, and ice-sounding radars. We present here the full radar dataset from the BAS PASIN radar system consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.