From 1 - 10 / 22
  • During the 2001-02 field season a regional survey was flown on a 10 km line spacing grid over the drainage basin of the Rutford Ice stream (West Antarctica), as part of the TORUS (Targeting ice stream onset regions and under-ice systems) project. We present here the bed elevation picks from airborne radar depth sounding collected using the "BAS-built" radar depth sounding system mounted on the BAS aerogeophysical equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data

  • During the 2010/2011 Antarctic field season a collaborative NERC AFI (Antarctic Funding Initiative) project studying the basal boundary conditions of the Institute & Moller ice streams, West Antarctica, collected ~25,000 km of new high quality aerogeophysics data. Data were acquired using the BAS PASIN depth sounding radar mounted in the BAS aerogeophysically equipped Twin Otter "Bravo Lima". Data are provided as XYZ ASCII line data. Data were collected as part of the UK Natural Environment Research Council AFI grant NE/G013071/1.

  • A British Antarctic Survey Twin Otter and survey team acquired 15,500 line-km of aerogeophysical data during the 2001/02 Antarctic field season along a 1-km line spacing grid with tie-lines 8 km apart. Twenty-five flights were flown from the South African base SANAE, for a total of 100 survey hours. We present here the processed bed elevation picks from airborne radar depth sounding. The airborne-radio echosounding data were collected for 5 flights, to image ice-thickness and bedrock configuration. Data are provided as XYZ ASCII line data. This high-resolution aerogeophysical survey was part of the "Magmatism as a Monitor of Gondwanabreak-up" project (MAMOG) of the British Antarctic Survey, which included new geochemical investigations, structural geology, geochronology, and AMS studies over western Dronning Maud Land.

  • During the austral summer of 2001/02 five thousand line kilometres of airborne radio echo sounding and aeromagnetic data were collected in the region of three tributaries of Slessor Glacier, East Antarctica, which drains into the Filchner Ice Shelf. We present here the processed bed elevation picks from airborne radar depth sounding acquired using the BAS aerogeophysicaly equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data. Data were collected as part of UK Natural Environment Research Council (NERC) grant GR3/AFI2/65

  • We present here BEDMAP1 (2000-2001), a suite of gridded products describing surface elevation, ice-thickness and the sea floor and subglacial bed elevation of the Antarctic south of 60deg S. The suite includes grids representing: - ice-sheet thickness over the ice sheet and shelves, - bed elevation beneath the grounded ice sheet, - bathymetry to 60 degrees South including the areas beneath the ice shelves. These grids are consistent with a high-resolution surface elevation model of Antarctica. While the digital models have a nominal spatial resolution of 5 km, such high resolution is not strictly justified by the original data density over all parts of the ice sheet. The suite does however provide an unparalleled vision of the geosphere beneath the ice sheet and a more reliable basis for ice sheet modelling. The bed elevation DEM, which includes the entire geosphere south of 60 degrees South, provides an improved delineation of the boundary between East and West Antarctica and sheds new light on the morphology of the contiguous East Antarctic landmass, much of which is buried below an average of 2500 m of ice.

  • An airborne radar survey was flown over the Institute and Moller ice streams in the Weddell Sea sector of West Antarctica in the austral summer of 2010/11 as part of the Institute-Moller Antarctic Funding Initiative (IMAFI) project (grant reference number: NE/G013071/1). This project was a NERC Antarctic Funding Initiative (AFI) collaborative project between the British Antarctic Survey and the Universities of Edinburgh, York, Aberdeen and Exeter with the aim to test the hypothesis that the Institute and Moller ice streams are underlain by weak marine sediments which control the flow of the overlying ice. Operating from two static field camps close to the ice divide between the Institute and Moller ice streams and Patriot Hills, we collected ~25,000 km of airborne radio-echo sounding data across 28 survey lines. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, a LaCoste and Romberg air-sea gravimeter, and an ice-sounding radar system (PASIN). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • During the austral summer of 2005/06 a collaborative UK/Italian field campaign collected ~61,000 line km of aerogeophysical data over the previously poorly surveyed Wilkes subglacial basin, Dome C, Transantarctic Mountains, George V Land and Northern Victoria Land using airborne survey systems mounted in a Twin Otter aircraft. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, a LaCoste and Romberg air-sea gravimeter, and an ice-sounding radar system (PASIN). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • During the austral summer of 2012/13 a major international collaboration between Danish, US, UK, Norwegian and Argentinian scientists collected ~29,000 line km (equivalent to 464,317 km2) of aerogeophysical data over 132 hours of flight time and covering the previously poorly surveyed Recovery Glacier and Recovery Subglacial Lakes, as well as the area of Coats Land inboard from Halley VI using airborne survey systems mounted in Twin Otter aircraft. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an air-sea gravity meter, and an ice-sounding radar system (PASIN). We present here the full radar dataset consisting of the deep-sounding chirp in its processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • This data set corresponds to data acquired by the British Antarctic Survey (BAS) airborne Synthetic Aperture Radar (SAR) PASIN2 (Polarimetric Airborne Scientific INstrument, mark 2), designed for deep ice sounding and basal 3d-mapping. The data set includes the processed SAR images as depth profiles in the Recovery Ice Stream and Rutford Ice Stream, respectively downstream and upstream of the grounding line, and respectively for the 2016/17 FISS (Filchner Ice Shelf System) and the 2019/20 BEAMISH (Bed Access, Monitoring and Ice Sheet History) projects, both during the Antarctic Summer. With multiple antennas for transmission and reception at 150-MHz central frequency, and an across-track physical array, PASIN2 resolves the ambiguities for distinguishing between scatterers from port and starboard directions; however, in the two SAR images of the current dataset the port/starboard ambiguities are not resolved. On this dataset the user will be able to apply the RGB Doppler Decomposition method in the Doppler domain, interpret the results, and modify the different parameters and colours to contrast the results, all with the outcome of conducting new decompositions according to other datasets and needs. The RGB Spectral Decomposition is a generalised framework to interpret the SAR images: first, the Doppler or range spectral domains are first split into three sub-bandwidths; next, to each of the three a colour of a triplet of colours is assigned; and finally the three are superposed into one single image by the addition of the three colours. If the decomposition is applied on the Doppler spectrum, the new image contains the directional information related to the Doppler frequencies: positive frequencies when the radar approaches the target, near zero frequencies when the relative distance from radar to target is near stationary, and negative when the radar leaves it behind. If the backscattering is characterised by a very broad beamwidth the target will be gray/white, and if by a very narrow beamwidth then the target will be represented by one of the colours of the triplet. This work has received funding from the NERC grant NE/L013444/1, project: Ice shelves in a warming world: Filchner Ice Shelf System (FISS), Antarctica. The 2016/17 data were collected as part of the NERC grant NE/L013770/1, project: Ice shelves in a warming world: Filchner Ice Shelf System (FISS), Antarctica. The 2019/20 data were collected as part of the BAS National Capability contribution to the NERC/NSF International Thwaites Glacier Collaboration (ITGC) program.

  • As part of the International Thwaites Glacier Collaboration (ITGC) ~4432 km of new radar depth sounding data was acquired over the Thwaites Glacier catchment by the British Antarctic Survey. Data was collected using the PASIN-2 polametric radar system, fitted on the BAS aerogeophysical equipped survey aircraft "VP-FBL". The survey operated from Lower Thwaites Glacier camp, and focused on collecting data in regions of ice >1.5 km thick between 70 and 180 km from the grounding line. Additional profiles from the coast to the Western Antarctic Ice Sheet (WAIS) divide and over the eastern shear margin were also flown. Ice thicknesses between 418 and 3744 m were measured, with a minimum bed elevation of -2282 m imaged. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an iMAR strapdown gravity system, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.