From 1 - 4 / 4
  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 4.0 chlorophyll-a product (in mg/m3) on a sinusoidal projection at 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Note, the chlorophyll-a data are also included in the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection.)

  • The ESA Ocean Colour CCI project has produced global level 3 binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 4.2 chlorophyll-a product (in mg/m3) on a sinusoidal projection at 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites). Note, the chlorophyll-a data are also included in the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection.)

  • This dataset comprises chlorophyll-a and phaeopigment-a concentrations (mg l-1) obtained from seawater samples collected during cruise DY098 on the RRS Discovery during the period 2019-01-02 to 2019-02-10. The cruise was part of the POETS-WCB and SCOOBIES time-series with an additional survey undertaken around the South Sandwich Islands (SSI). The data contained within this dataset were predominantly collected during the SSI component of the cruise. Samples were collected at up to 6 depths across the top 400 m (approx. 5 m, 50 m, 100 m, 200 m, 400 m and the chlorophyll maximum). Samples were collected and filtered on board and analysed at the British Antarctic Survey laboratory. This work was funded through NERC National Capability Science funding (NC-SS) for the Polar Ocean Ecosystem Time Series (POETS) and FCO grant NEB1686.

  • The ESA Ocean Colour CCI project has produced global, level 3, binned multi-sensor time-series of satellite ocean-colour data with a particular focus for use in climate studies. This dataset contains their Version 5.0 chlorophyll-a product (in mg/m3) on a sinusoidal projection at 4 km spatial resolution and at a number of time resolutions (daily, 5-day, 8-day and monthly composites) covering the period 1997 - 2020. Note, the chlorophyll-a data are also included in the 'All Products' dataset. This data product is on a sinusoidal equal-area grid projection, matching the NASA standard level 3 binned projection. The default number of latitude rows is 4320, which results in a vertical bin cell size of approximately 4 km. The number of longitude columns varies according to the latitude, which permits the equal area property. Unlike the NASA format, where the bin cells that do not contain any data are omitted, the CCI format retains all cells and simply marks empty cells with a NetCDF fill value. (A separate dataset is also available for data on a geographic projection.) Please note, data from December 2020 onwards are affected by an anomaly discovered after production and resulting in a spurious jump in remote sensing reflectance. The anomaly has been corrected in the version 5.0.1 of the dataset available through the Copernicus Climate Change Service (https://doi.org/10.24381/cds.f85b319d) Version 6.0 of this data is now also available here: https://doi.org/10.5285/5011d22aae5a4671b0cbc7d05c56c4f0