From 1 - 10 / 54
  • "To what extent was the Little Ice Age a result of a change in the thermohaline circulation?" project. This was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Joint International Round - NE/C509507/1 - Duration 1 Aug 2005 - 31 Jul 2008) led by Dr Tim Osborn of the University of East Anglia, with co-investigators at the University of East Anglia and Royal Netherlands Meteorology Institute. The dataset contains radiative forcing model output from the HadCM3 model.

  • The Assimilation in ocean and coupled models to determine the thermohaline circulation" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 2 - NE/C509058/1 - Duration 1 Sep 2005 - 30 Sep 2009) led by Prof Keith Haines of the University of Reading, with co-investigators at the National Oceanography Centre. This dataset collection contains Atlantic Ocean Thermohaline Circulation ORCA1 model data.

  • "The Quantitative applications of high-resolution late Holocene proxy data sets: estimating climate sensitivity and thermohaline circulation influences" project, part of the Natural Environment Research Council (NERC) RAPID Climate Change Research Programme, was led by Prof Keith Briffa of the University of East Anglia and co-investigators at the University of East Anglia (Round 1 - NER/T/S/2002/00440 - Duration 1 Jul 2003 - 30 Jun 2008). This dataset contains self-calibrating Palmer Drought Severity Index data.

  • "The Circulation, overflow, and deep convection studies in the Nordic Seas using tracers and models" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00446 - Duration 1 Aug 2003 - 31 Oct 2006 ) led by Prof Andrew Watson of the University of East Anglia, also with co-investigators at the University of East Anglia. Dataset contains sources of water in the Greenland-Scotland overflows: recent tracer release and transient tracer observations, as well as the initiation of convection and its relation to submesoscale hydrodynamics. This dataset contains MIT General Circulation Model (MITgcm) ocean model channel experiment outputs.

  • "Improving our ability to predict rapid changes in the El Nino Southern Oscillation climatic phenomenon" project, which was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00443 - Duration 1 Jan 2004 - 30 Sep 2007) led by Prof Alexander Tudhope of the University of Edinburgh, with co-investigators at the Scottish Universities Environment Research Centre, Bigelow Laboratory for Ocean Sciences, and the University of Reading. This dataset collection contains HadCM3 model outputs. The objective was to use a combination of palaeoclimate reconstruction from annually-banded corals and the fully coupled HadCM3 atmosphere-ocean general circulation model to develop an understanding of the controls on variability in the strength and frequency of ENSO, and to improve our ability to predict the likelihood of future rapid changes in this important element of the climate system. To achieve this, three periods were targeted: a) 0-2.5 ka: Representative of near-modern climate forcing; revealing the internal variability in the system. b) 6-9 ka: a period of weak or absent ENSO, and different orbital forcing; a test of the model's ability to capture externally-forced change in ENSO. c) 200-2100 AD: by using the palaeo periods to test and optimise model parameterisation, produce a new, improved, prediction of ENSO variability in a warming world. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • The "ISOMAP UK" project was a combined data-modelling investigation of water isotopes and their interpretation during rapid climate change events project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00460 - Duration 1 May 2003 - 30 Apr 2008) led by Prof J.A. Holmes of the University College London, with co-investigators at the University of Southampton, University of Liverpool, University of Manchester, University of Bristol and the NERC British Antarctic Survey. This dataset contains comparison of high-resolution isotope records from terrestrial archives in NW Europe with model simulations of isotopes in precipitation. This is a control 9K simulation, and a freshwater hosing experiment. The freshwater hosing experiment had 5Sv of freshwater added to the North Atlantic for 1 year. The freshwater forcing was then removed and the model allowed to adjust. Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • RAPIT was looking at the problem of estimating the risk of the collapse of the overturning circulation. Using modern statistical methods for the analysis of complex numerical models, large ensembles of two Atmosphere Ocean General Circulation Models (HADCM3 and CHIME) were analysed. This dataset collection contains meteorology, climatology and ocean outputs from ensemble runs xfel, xfgb, xfha and xgym. Studies of large excursions of the strength of the overturning in existing control runs were used to guide the choice of metrics and diagnostics.

  • "To what extent was the Little Ice Age a result of a change in the thermohaline circulation?" project. This was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Joint International Round - NE/C509507/1 - Duration 1 Aug 2005 - 31 Jul 2008) led by Dr Tim Osborn of the University of East Anglia, with co-investigators at the University of East Anglia and Royal Netherlands Meteorology Institute. The dataset contains radiative forcing model output from the HadCM3 model.

  • "The Role of Air-Sea Forcing in Causing Rapid Changes in the North Atlantic Thermohaline Circulation" project was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Round 1 - NER/T/S/2002/00427 - Duration 16 Feb 2004 - 15 Oct 2007) led by Dr Simon Josey of National Ocenaography Centre, with co-investigators also at the National Oceanography Centre. This dataset collections contains analysis of coupled model output of surface forcing variability in ocean circulation from the Fast Ocean Rapid Troposphere Experiment (FORTE). Rapid Climate Change (RAPID) was a £20 million, six-year (2001-2007) programme for the Natural Environment Research Council. The programme aimed to improve the ability to quantify the probability and magnitude of future rapid change in climate, with a main (but not exclusive) focus on the role of the Atlantic Ocean's Thermohaline Circulation.

  • "To what extent was the Little Ice Age a result of a change in the thermohaline circulation?" project. This was a Natural Environment Research Council (NERC) RAPID Climate Change Research Programme project (Joint International Round - NE/C509507/1 - Duration 1 Aug 2005 - 31 Jul 2008) led by Dr Tim Osborn of the University of East Anglia, with co-investigators at the University of East Anglia and Royal Netherlands Meteorology Institute. The dataset contains fresh water hosing model output from the CMIP experiment run by the HadCM3 model. The freshwater was added to the North Atlantic basin between latitudes 50°N and 70°N.