Keyword

EARTH SCIENCE > Cryosphere > Glaciers/Ice Sheets > Ice Sheets

72 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Update frequencies
Resolution
From 1 - 10 / 72
  • This archive is a suite of ground penetrating radar (GPR) data acquired by Project MIDAS during field campaigns on Larsen C, in 2014 and 2015. All data were acquired with a Sensors&Software pulsEKKO PRO GPR system, fitted with antennas of 200 MHz centre-frequency. The system was towed behind a snowmobile, with distances recorded with GPS. These data are part of the NERC-funded MIDAS (''Impact of surface melt and ponding on ice shelf dynamics and stability'') research project, with grant references NE/L006707/1 and NE/L005409/1. Other MIDAS data are available.

  • This dataset provides a map of the Antarctic grounding zone. The map is assembled using CryoSat-2 satellite radar altimetry data spanning between 2010-2017. This dataset provides both the limit of tidal flexure (point F) and hydrostatic equilibrium (point H) of the grounding zone. Funding was provided by the NERC grant NE/N011511/1.

  • The radar data collected in 2013-2014 at Dome C, East Antarctica, aims to understand bulk preferred crystal orientation fabric near a dome. We measure changes in englacial birefringence and anisotropic scattering in 21 sites along a 36 km long profile across Dome C. These optical properties are obtained by analysing radar returns for different antenna orientations. More details can be found in Ershadi et al, 2021. Funding was provided by BAS National Capability and IPEV core funding.

  • Daily outputs on a 7.5 km horizontal resolution grid covering the Greenland Ice Sheet from MARv3.6.2, which is a regional climate model developed for the Polar regions that solves the regional climate and ice sheet surface mass balance. MAR was forced by ERA-Interim re-analysis data.

  • Metrics of dark ice extent and duration, and snowline retreat estimates, for the south-west ablation zone of the Greenland Ice Sheet, derived from MODIS satellite imagery. These metrics are provided on a ~613 m grid at annual resolution and cover the melt season, defined as June-July-August each year. All scripts used to generate the metrics are also provided, as well as the scripts which generate the plots found in the referenced publication. Funding was provided by the NERC grant NE/M021025/1.

  • This dataset consists of orthomosaics created from flights of an unmanned aerial system imaging platform at UPE_U in north-west Greenland on 24 July 2018. The Level-2 orthomosaics consist of (1) ground reflectance at 5 spectral bands, and (2) a digital elevation model. Level-3 orthomosaics consist of (1) broadband albedo calculated using a narrowband-to-broadband approximation and (2) surface type classification into snow, clean ice, light algae, heavy algae, cryoconite and water, as determined by a supervised classification algorithm which was trained on measurements collected at S6, K-transect, south-west Greenland. Funding was provided by the NERC standard grant NE/M021025/1.

  • As part of the International Thwaites Glacier Collaboration (ITGC) 4432 km of new radar depth sounding data was acquired over the Thwaites Glacier catchment by the British Antarctic Survey. Data was collected using the PASIN polametric radar system, fitted on the BAS aerogeophysical equipped survey aircraft VP-FBL. The survey operated from Lower Thwaites Glacier camp, and focused on collecting data in regions of ice >1.5 km thick between 70 and 180 km from the grounding line. Additional profiles from the coast to the Western Antarctic Ice Sheet (WAIS) divide and over the eastern shear margin were also flown. Ice thicknesses between 418 and 3744 m were measured, with a minimum bed elevation of -2282 imaged. This dataset contains the navigation, surface elevation, ice thickness, and bed elevation data from the Thwaites Glacier 2019/20 season in the form of a CSV file. The Thwaites 2019/20 aerogeophysical survey was carried out as part of the BAS National Capability contribution to the NERC/NSF International Thwaites Glacier Collaboration (ITGC) program. Data processing was supported by the BAS Geology and Geophysics team.

  • Dissolved inorganic and organic nutrient concentrations, dissolved organic carbon concentrations and glacier algal cell abundance are quantified for supraglacial environments in the Dark Zone of the Greenland Ice Sheet during July and August 2016. Samples include surface ice with varying degrees of visible impurities, cryoconite hole water and supraglacial stream water. Surface ice samples are comprised of the top 2 cm of a 1x1 m ice surface area. Dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP) and dissolved organic carbon (DOC) were quantified for all ice surface, supraglacial stream and cryoconite hole water samples collected. Glacier algae abundance was quantified for ice surface samples. Field blank corrections were conducted for all DIN, DON, DIP, DOP and DOC data. Any values resulting below the instrument limit of detection were considered to be 0. Funding was provided by the NERC ''Black and Bloom'' grant NE/M021025/1 and the Marie Sklodowska-Curie grant agreement No 675546.

  • In 2015 long offset seismic gathers were collected at Korff Ice Rise, West Antarctica, with the aim of studying fabric within the ice column and ice bed properties. Data were collected at sites within 700m of one another along the axis of the ice divide. The seismic gathers were collected at 60 deg intervals to study azimuthal variation in seismic velocity and shear wave splitting. This study is part of the British Antarctic Survey programme Polar Science for Planet Earth. All data were collected with the support of the British Antarctic Survey.

  • This dataset provides the data produced as part of the work published in: Leeson, A. A., Foster, E., Rice, A., Gourmelen, N. and van Wessem, J. M.. 2019. ''Evolution of supraglacial lakes on the Larsen B ice shelf in the decades before it collapsed'' Geophysical Research Letters. It includes 1) shapefiles of supraglacial lakes mapped in both optical (Landsat) and SAR (ERS) satellite imagery, 2) rasters of lake depth, derived from Landsat TM and ETM+ images acquired in 1988 and 2000 and 3) shapefiles of the study area considered in the paper. Funding was provided by ERPSRC grant EP/R01860X/1.