From 1 - 10 / 25
  • During the austral summer of 2001/02 five thousand line kilometres of airborne radio echo sounding and aeromagnetic data were collected in the region of three tributaries of Slessor Glacier, East Antarctica, which drains into the Filchner Ice Shelf. We present here the processed bed elevation picks from airborne radar depth sounding acquired using the BAS aerogeophysicaly equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data. Data were collected as part of UK Natural Environment Research Council (NERC) grant GR3/AFI2/65

  • During the 2001-02 field season a regional survey was flown on a 10 km line spacing grid over the drainage basin of the Rutford Ice stream (West Antarctica), as part of the TORUS (Targeting ice stream onset regions and under-ice systems) project. We present here the bed elevation picks from airborne radar depth sounding collected using the "BAS-built" radar depth sounding system mounted on the BAS aerogeophysical equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data

  • During the 2010/2011 Antarctic field season a collaborative NERC AFI (Antarctic Funding Initiative) project studying the basal boundary conditions of the Institute & Moller ice streams, West Antarctica, collected ~25,000 km of new high quality aerogeophysics data. Data were acquired using the BAS PASIN depth sounding radar mounted in the BAS aerogeophysically equipped Twin Otter "Bravo Lima". Data are provided as XYZ ASCII line data. Data were collected as part of the UK Natural Environment Research Council AFI grant NE/G013071/1.

  • A British Antarctic Survey Twin Otter and survey team acquired 15,500 line-km of aerogeophysical data during the 2001/02 Antarctic field season along a 1-km line spacing grid with tie-lines 8 km apart. Twenty-five flights were flown from the South African base SANAE, for a total of 100 survey hours. We present here the processed bed elevation picks from airborne radar depth sounding. The airborne-radio echosounding data were collected for 5 flights, to image ice-thickness and bedrock configuration. Data are provided as XYZ ASCII line data. This high-resolution aerogeophysical survey was part of the "Magmatism as a Monitor of Gondwanabreak-up" project (MAMOG) of the British Antarctic Survey, which included new geochemical investigations, structural geology, geochronology, and AMS studies over western Dronning Maud Land.

  • As part of the International Thwaites Glacier Collaboration (ITGC) ~4432 km of new radar depth sounding data was acquired over the Thwaites Glacier catchment by the British Antarctic Survey. Data was collected using the PASIN-2 polametric radar system, fitted on the BAS aerogeophysical equipped survey aircraft "VP-FBL". The survey operated from Lower Thwaites Glacier camp, and focused on collecting data in regions of ice >1.5 km thick between 70 and 180 km from the grounding line. Additional profiles from the coast to the Western Antarctic Ice Sheet (WAIS) divide and over the eastern shear margin were also flown. Ice thicknesses between 418 and 3744 m were measured, with a minimum bed elevation of -2282 m imaged. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an iMAR strapdown gravity system, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • An airborne radar survey was flown over the Institute and Moller ice streams in the Weddell Sea sector of West Antarctica in the austral summer of 2010/11 as part of the Institute-Moller Antarctic Funding Initiative (IMAFI) project (grant reference number: NE/G013071/1). This project was a NERC Antarctic Funding Initiative (AFI) collaborative project between the British Antarctic Survey and the Universities of Edinburgh, York, Aberdeen and Exeter with the aim to test the hypothesis that the Institute and Moller ice streams are underlain by weak marine sediments which control the flow of the overlying ice. Operating from two static field camps close to the ice divide between the Institute and Moller ice streams and Patriot Hills, we collected ~25,000 km of airborne radio-echo sounding data across 28 survey lines. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, a LaCoste and Romberg air-sea gravimeter, and an ice-sounding radar system (PASIN). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.

  • This data set corresponds to the processing of data acquired by the British Antarctic Survey (BAS) airborne Synthetic Aperture Radar (SAR) PASIN2 (Polarimetric Airborne Scientific INstrument, mark 2), designed for deep ice sounding and basal 3D-mapping. The dataset includes the processed calibration data collected over the sea surface near Rothera Research Station during the Antarctic Summers campaigns in 2016/17 FISS (Filchner Ice Shelf System) and 2019/20 BEAMISH (Bed Access, Monitoring and Ice Sheet History) projects, and the processed SAR images as depth profiles in the Recovery Ice Stream near its grounding line, in 2016/17 (FISS). With multiple antennas for transmission and reception at 150-MHz central frequency, and an across-track physical array, PASIN2 resolves the ambiguities for distinguishing between scatterers from port and starboard directions. After processing several 2D SAR images (range and along-track dimensions) with transmitter-receiver pairs, the directional ambiguities are resolved, obtaining the across-track Direction of Arrival (DoA, elevation angle) estimation. Finally, from the 3D geometry of range, along-track and across-track angle, the real depths and across-track distances are estimated, regarding the case of the incorrectly assumed vertical DoA of a single SAR image. The calibration flights assessed and validated the instrument antenna patterns and processing performances. In this dataset, only the simulated and measured antenna patterns, and SAR and DoA images are included. By resolving directional ambiguities and accounting for reflector across-track location, the true ice thickness and bed elevation are obtained, thereby removing the error of the usual assumption of vertical DoA, that greatly influence the output of flow models of ice dynamics. This work was supported by NERC grant reference NE/L013444/1.

  • During the austral summer of 2004/05 a collaborative US/UK field campaign undertook a systematic geophysical survey of the entire Amundsen Sea embayment using comparable airborne survey systems mounted in Twin Otter aircraft. Here we present the portion of the survey covering the Pine Island Glacier basin led by British Antarctic Survey. Operating from a temporary field camp (PNE, S 77deg34'' W 095deg56''); we collected ~35,000 km of airborne survey data. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, gravity meter, and a new ice-sounding radar system (PASIN). We present here the bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar depth sounding system. Data are provided as XYZ ASCII line data.

  • This database provides access to internal layers digitised from airborne radio-echo sounding (RES) surveys conducted across the Antarctic Ice Sheet by a consortium of the UK Scott Polar Research Institute, US National Science Foundation and the Technical University of Denmark between 1974 and 1979. The internal layers at the time of surveying were only recorded onto film. In 2004 the original film records were scanned into a digital database, and from 2004-2006 ''digitised'' internal layers were retrieved from the new electronic records. The database contains digitised internal layers from the original analogue records, as well as 3-dimensional visualisations of the internal layers overlaid over Antarctic subglacial topography (BEDMAP). The RES surveys conducted by this SPRI-NSF-TUD consortium took in approximately 400,000 km of flight track across both the West and East Antarctic Ice Sheets. Covering ~70% of the ice sheet overall. The surveys were driven principally by a desire to measure ice thickness, but also captured numerous internal layers existing through most of the depth profile across large swathes of the ice sheet. Compilation of the database was sponsored by the NERC Centre for Polar Observation and Modelling, and the data is hosted by NERC/British Antarctic Survey.

  • An airborne radar survey was flown during the austral summer of 2015/16 over the Foundation Ice Stream, Bungenstock Ice Rise, and the Filchner ice shelf as part of the 5-year Filchner Ice Shelf System (FISS) project. This project was a NERC-funded (grant reference number: NE/L013770/1) collaborative initiative between the British Antarctic Survey, the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. The 2015/16 aerogeophysics survey acquired ~7,000 line km of aerogeophysical data with a particular focus on the Foundation Ice Stream. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data. This is Version 2 of the dataset. This version differs from Version 1, as follows: 1. The variables "fast_time" has been updated due to errors found. The error in the variable related to an error in the sampling frequency of the system, which should have been 24 MHz instead of 22MHz. This has been updated. 2. The units in the "surface_pick_layerData" and the "bed_pick_layerData" variables should have been "samples relative to the BAS radar system", instead of "microseconds". This has been corrected. 3. The metadata in this DMS entry and in the NetCDF files has also been updated. Mainly, the sampling frequency has been modified from 22 MHz to 24 MHz to reflect the radar system characteristics. This also affected the value provided for the radar system resolution and sampling interval, which have both been updated in the metadata. 4. The SEGY sampling interval value (byte numbers: 117-118 (SI)) has also been updated to reflect the change in sampling frequency mentioned above. All other variables remain unchanged. Note that these changes do not affect the radar data or the associated radar-derived data in the files.