From 1 - 2 / 2
  • The research team collected data on soil-atmosphere exchange of trace gases and environmental variables during four field campaigns (two wet seasons, two dry seasons) the lowland tropical peatland forests of the Pastaza-Marañón foreland basin in Peru. The campaigns took place over a 27 month period, extending from February 2012 to May 2014. This dataset contains measurements from field sampling of soil-atmosphere fluxes concentrated on 4 dominant vegetation types in the lowland tropical peatland forests of the Pastaza-Marañón foreland basin. Vegetation types included; forested vegetation, forested [short pole] vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. They were measured at 5 different sites in Peru including; Buena Vista, Miraflores, San Jorge, Quistococha, and Charo. Greenhouse gas (GHG) fluxes were captured from both floodplain systems and nutrient-poor bogs in order to account for underlying differences in biogeochemistry that may arise from variations in hydrology. Parameters include methane and nitrous oxide fluxes, air/soil temperatures, soil pH, soil electrical conductivity, soil dissolved oxygen content, and water table depth. See documentation and data lineage for data quality. These data were collected in support of the NERC project: Amazonian peatlands - A potentially important but poorly characterised source of atmospheric methane and nitrous oxide (NE/I015469/2)

  • 'Amazonian peatlands - A potentially important but poorly characterised source of atmospheric methane and nitrous oxide' was a NERC (Natural Environment Research Council) funded project from 2013-2014 with the following grant reference: NE/I015469/2. This dataset collection contains measurements from field sampling of soil-atmosphere fluxes concentrated on 4 dominant vegetation types in the lowland tropical peatland forests of the Pastaza-Marañón foreland basin. Vegetation types included; forested vegetation, forested [short pole] vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Greenhouse gas (GHG) fluxes were captured from both floodplain systems and nutrient-poor bogs in order to account for underlying differences in biogeochemistry that may arise from variations in hydrology. Sampling was conducted during four field campaigns (two wet season, two dry season) over a 27-month period, extending from February 2012 to May 2014.