geophysics
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Update frequencies
-
The ESA PolarGap airborne gravity, lidar/radar and aeromagnetic survey was carried out in Antarctica in the field season 2015/16. The purpose of the 2015/16 ESA PolarGAP airborne survey of the South Pole region was to fill the gap in satellite gravity coverage, enabling construction of accurate global geoid models. Additional radar flights over the Recovery Lakes for the Norwegian Polar Institute (NPI) were carried out as part of the same survey. In conjunction with the primary datasets aeromagnetic data was collected opportunistically, to provide new insights into the subglacial geology. Data were collected using a caesium magnetometer system, and have been corrected to total field values following the approach laid out by the SCAR ADMAP working group (http://admap.kopri.re.kr/ADMAP-2_SCR_27Aug13.pdf). The aircraft used was the BAS aerogeophysicaly equipped twin otter VP-FBL. Data are available as an ASCII table (.csv).
-
A new version of this dataset exists. Please have a look at: Ferraccioli, F., Forsberg, R., Matsuoka, K., Olesen, A., Jordan, T., Corr, H., Robinson, C., Kohler, J., & Bodart, J. (2024). Processed airborne radio-echo sounding data from the POLARGAP survey covering the South Pole, and Foundation and Recovery Glaciers, East Antarctica (2015/2016) (Version 2.0) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/6be0a803-78d4-4ca9-be02-3838866763c3 The ESA PolarGap airborne gravity, lidar/radar and aeromagnetic survey was carried out in Antarctica in the field season 2015/16. The purpose of the 2015/16 ESA PolarGAP airborne survey of the South Pole region was to fill the gap in satellite gravity coverage, enabling construction of accurate global geoid models. Additional radar flights over the Recovery Lakes for the Norwegian Polar Institute (NPI) were carried out as part of the same survey, but included collection of airborne gravity. Gravity data were collected using two complimentary systems. The primary system was a ZLS-modified Lacoste and Romberg (LCR) gravimeter (S-83) which gives exceptionally low and predictable long term drift. The secondary system was high specification inertial navigation system (iMAR RQH-1003), provided by TU Darmstadt, capable of resolving gravity anomalies even under turbulent conditions, but more prone to instrument drift. Results from both systems were merged to give a unified best product. The aircraft used was the BAS aerogeophysicaly equipped twin otter VP-FBL. Data are available as an ASCII table (.csv).
-
This dataset contains data from three ground-penetrating radar surveys undertaken to image ice thickness and englacial stratigraphy during the 2019-20 Antarctic field season, as part of the International Thwaites Glacier Collaboration (funded by NERC and NSF). The ground-penetrating radar data are presented as SEG-Y, along with the GPS tracks of the surveys, presented as GPS Exchange Format (GPX). The subglacial extensions of ridges of three nunataks close to Pine Island and Larter Glaciers in the Hudson Mountains region were surveyed, with the aim of determining their suitability as subglacial bedrock drill sites. Those nunataks are Winkie Nunatak (74 degrees 51'' 41.0" S/99 degrees 46'' 49.4" W), Evans Knoll (74 degrees 51'' 00.0" S/100 degrees 25'' 00.0" W), and Webber Nunatak (74 degrees 47'' 00.0" S/99 degrees 50'' 00.0" W). This work was funded by NERC grants NE/S00663X/1 and NE/S006710/1.
NERC Data Catalogue Service