From 1 - 10 / 69
  • Saline Aquifer CO2 Storage Phase 2(SACS2). Work Area 1 (Geology) - Progress Report 1 April to 31 December 2000. The report can be downloaded from http://nora.nerc.ac.uk/511460/.

  • The CO2 storage operation at Sleipner in the Norwegian North Sea provides an excellent demonstration of the application of time-lapse surface seismic methods to CO2 plume monitoring under favorable conditions. Injection commenced at Sleipner in 1996 with CO2 separated from natural gas being injected into the Utsira Sand, a major saline aquifer of late Cenozoic age. CO2 injection is via a near-horizontal well at a depth of about 1012 m below sea level (bsl) some 200 m below the reservoir top, at a rate approaching 1 million tonnes (Mt) per year, with more than 11 Mt currently stored. The report can be downloaded at http://nora.nerc.ac.uk/9418/.

  • This poster on the UKCCSRC Call 2 project The Development and Demonstration of Best Practice Guidelines for the Safe Start-up Injection of CO2 into Depleted Gas Fields was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C2-183. Highly-depleted gas fields represent prime potential targets for large-scale storage of captured CO2 emitted from industrial sources and fossil-fuel power plants. Given the potentially low reservoir pressures as well as the unique thermodynamic properties of CO2, especially in the presence of the various stream impurities, the injection process presents significant safety and operational challenges. In particular, the start-up injection leads to the following risks: • blockage due to hydrate and ice formation following the contact of the cold CO2 with the interstitial water around the wellbore; • thermal stress shocking of the wellbore casing steel, leading to its fracture and ultimately escape of CO2; • over-pressurisation accompanied by CO2 backflow into the injection system due to the violent evaporation of the superheated liquid CO2 upon entry into the wellbore.

  • This is THE first CO2 storage publication produced in the UK. The Association of the Coal Producers of the European Community are agreed that immediate action is required to reduce the build up of greenhouse gases in the atmosphere (Harrison, 1990). This is considered necessary even though the effect of these gases on global climate and the human race, are very uncertain mainly because the factors and processes affecting climatic change are poorly understood. http://nora.nerc.ac.uk/511485/

  • Pre-proposal for scientific drilling 'GlaciStore: Understanding Late Cenozoic glaciation and basin processes for the development of secure large-scale offshore CO2storage (North Sea)', submitted to Integrated Ocean Discovery Programme (IODP) March 2014. The proponent 'GlaciStore' consortium comprises research and industry organisations from the UK and Norway. The pre-proposal describes the scientific research objectives, 12 proposed drill sites to address the objectives, the relationship of the research with the IODP science plan, and describes and illustrates three scientific objectives. The objectives are to investigate the glacial history and sedimentary architecture, fluid flow and processes, and the stress history and geomechanical response in strata that have experienced multiple glacial and interglacial cycles cycles. A drilling and sampling strategy and the measurements expected to be taken are also described The lead submitter, on behalf to the GlaciStore consortium is Heather Stewart, British Geological Survey (BGS).The 27 proponents from the UK and Norway (BGS, Institute for Energy Technology, Lundin Norway AS, SINTEF Energy Research, Statoil ASA, University of Bergen, University of Edinburgh and University of Oslo) and their expertise are listed. The pre-proposal is a pdf format file. This is restricted to the proponents for publication and to progress to full proposal to IODP. UKCCSRC Grant UKCCSRC-C1-30.

  • Technical report. Ove Arup & Partners Limited (Arup) and their partners Scottish Carbon Capture and Storage (SCCS) were commissioned in December 2009 by the European Commission Directorate-General Energy and Transport (DG-TREN) to undertake a feasibility study for Europe-wide CO2 infrastructures. The purpose of the study was to develop a complete and integrated database of European CO2 sinks and sources and identify the main outline of a CO2 transport infrastructure for different scenarios. Available for download at http://hdl.handle.net/1842/15686.

  • This presentation on the EPSRC project, DiSECCS, was presented at the Cranfield Biannual, 8.04.13. Grant number: Grant number: EP/K035878/1.

  • This poster on the UKCCSRC Call 2 project, The Development and Demonstration of Best Practice Guidelines for the Safe Start-up Injection of CO2 into Depleted Gas Fields, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C2-183.

  • Project report 'A summary of the methodology for the seismic stratigraphic interpretation for the 'GlaciStore' bid to IODP' prepared by the lead organisation, British Geological Survey (BGS), with contributions from University of Edinburgh and BGS participants. The report describes the method followed and data followed for the interpretation of seismic, well, borehole and bathymetry data. The objective of the interpretation is to inform the selection of sites for a scientific drilling proposal and demonstrate the proponents have sufficient understanding of the proposed site. Future scientific investigation and interpretation of the data are also proposed. The interpretation was undertaken as the 'cross-border geology' component of the UK CCS RC Call 1 ‘North Sea Aquifers' project. The report is a pdf format file and is also available for download at http://nora.nerc.ac.uk/513372/. UKCCSRC Grant UKCCSRC-C1-30.

  • Peer reviewed paper published in the journal Petroleum Geoscience - the paper describes work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. The geomechanical stability of faults affecting the Captain Sandstone and its overburden in the Inner Moray Firth region is investigated in terms of the ability of the faulted reservoir to safely store CO2. Also available online at http://pg.lyellcollection.org/content/22/3/211.full.