From 1 - 5 / 5
  • These data accompany a manuscript, titled: Stream and Slope Weathering Effects on Organic-rich Mudstone Geochemistry and Implications for Hydrocarbon Source Rock Assessment: A Bowland Shale Case Study All files with prefix 'Man_1' relate to this submission. The manuscript was submitted to the journal Chemical Geology in December 2016. Data include: 1) A range of photographs from the outcrop, drill cores, sub-samples, 'weathering grades' and thin section microphotographs from the Bowland Shale; 2) The results of mineralogical (whole rock powder x-ray diffraction; XRD) analyses for 18 subsamples; 3) The results of inorganic geochemical analyses (LECO elemental C and S, x-ray fluorescence major and trace elements) for 18 subsamples; 4) The results of organic geochemical analyses (Rock-Eval pyrolysis, d13Corg) for 20 subsamples; 5) RStudio scripts used to conduct statistical analyses (e.g., Principal Components Analysis) and generation of figures.

  • The data deposit includes results from 12 experiments that reacted carbon dioxide, seawater and limestone as a method of CO2 sequestration (as xlsx files). The data were obtained by Dr Huw Pullin, Cardiff University as part of a UKRI funded research project. Experiments were conducted under controlled temperatures (20degC), and CO2 pressures (5 and 50% v/v at 1 atm). The methods used are described in Xing et al., 2022 Chemical Engineering Journal. 431. 134096 DOI: 10.1016/j.cej.2021.134096

  • The data set comprises rhenium isotope compositions, rhenium concentrations, total organic carbon concentrations, and titanium concentrations measured from bulk rock digestions of the Eagle Ford Shale in South Texas, USA. The samples were obtained from coeval strata recovered in drill core Innes-1 and outcrop sections DR5 and DR12. The project aimed to compare the isotopic composition of Re before and after oxidative weathering. Rhenium concentrations were measured by isotope dilution, using liquid-liquid (alcohol) extraction and measurement by MC-ICP-MS. Rhenium isotopes were measured after a 3-stage column purification procedure using MC-ICP-MS. MC-ICP-MS measurements were made with the addition of a tungsten spike to correct for instrumental mass fractionation. Total organic carbon concentrations were measured by Rock-Eval pyrolysis (Rock-Eval VI) and Ti concentrations by ICP-AES.

  • This spreadsheet contains (U-Th-Sm)/He data for 73 hematite samples from the supergene profile of the Spence porphyry copper deposit in the Central Andes. These data are discussed in the G-cubed publication titled 'A rusty record of weathering and groundwater movement in the hyperarid Central Andes' (Shaw et al., 2021). Spence porphyry copper deposit Drill hole SPD0324, UTM WGS1984 19S, E 474975.22, N 7481100.39 Drill hole SPD 1848, UTM WGS1984 19S, E 474998.29, N 7481399.87 Drill hole SPD 0402, UTM WGS1984 19S, E 473969.87, N 7479755.01

  • This spreadsheet contains 21 oxygen isotope measurements for hematite and mixed hematite/goethite samples from the supergene profiles of the Spence and Cerro Colorado porphyry copper deposits in the Central Andes. Columns are also included which contain calculated isotopic values for weathering fluids which were present at the time of iron oxide formation. These data are presented and discussed in the G-cubed paper 'A rusty record of weathering and groundwater movement in the hyperarid Central Andes' (Shaw et al., 2021). Weathering fluid isotopic values are calculated using the published fractionation factors of Clayton & Epstein (1961), Yapp (1990) and Bao & Koch (1999). The authors have the most confidence in the fluid values obtained using the fractionation factor of Yapp (1990), for reasons outlined in the publication.