Total metal concentrations in water bodies
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
-
This dataset contains Radium (Ra) and Iron (Fe) concentrations along with supporting oceanographic measurements such as temperature and salinity of the water column. Data are from glacial melt waters around the West Antarctic Peninsula and Greenland as well as from the open southern ocean and at hydrothermal vents along the Mid-Atlantic Ridge. The data were collected for the Radium in Changing Environments: A Novel Tracer of Iron Fluxes at Ocean Margins (RaCE:TraX) project. The RaCE:TraX project is running between June 2017 and June 2022 and uses measurements of Radium (Ra) and Iron (Fe) along with knowledge of the half-life of Ra to predict supply and removal rates of Fe in the marine environment. The results hope to answer the questions 1) how much Fe comes from continental shelf sediments, 2) how much Fe is supplied by glacial meltwater, and 3) how rapidly is Fe scavenged from the metal-rich fluids at hydrothermal vents? Addressing these key gaps in the understanding of the marine Fe cycle will help determine how sensitive marine systems are to current Fe supply, as well as predict the impacts of changes in Fe supply on phytoplankton health, the biological pump, and global climate. The project is led by the University of Southampton School of Ocean and Earth Science and is a collaboration with the University of Bristol. The project received funding from the Natural Environmental Research Council (NERC, grant reference number: NE/P017630/1).
-
The data set comprises trace metal and isotope data from the GEOTRACES programme. The data set incorporates the core GEOTRACES parameters for example, Iron (Fe), Aluminum (Al), Zinc (Zn), Manganese (Mn), Cadmium (Cd), Copper (Cu), delta 15 Nitrogen, delta 13 Carbon, Thorium (Th) isotopes, Protactinium(Pa) isotopes, Lead (Pb) isotopes, Neodymium (Nd) isotopes and aerosols, These data are also supported by ancillary measurements. GEOTRACES is global in scope and consists of ocean sections complemented by regional process studies. The ocean sections are designed to cross regions that provide the most information about sources, sinks and internal cycling of trace elements and isotopes (TEIs). The programme started in 2006, with the first International Polar Year - GEOTRACES cruise, and aims to study all major ocean basins over the next decade. Advances in clean sampling protocols and analytical techniques provide an unprecedented capability for measurement of a wide range of TEIs. All measurements collected for GEOTRACES will use ultra clean techniques as many of the countries involved have built specialist winches, wires and conductivity-temperature-depth (CTD) units specifically for this programme. SAFe standards (standards developed following the Sampling and Analysis of Fe (SAFe) cruise) and GEOTRACES inter-calibration protocols provide quality control.The GEOTRACES programme builds on the data collected during the Geochemical Ocean Section Study (GEOSECS) in the 1970s. The potential afforded by advances in sampling protocol and analytical techniques had not been realized since then, largely because of a lack of coordinated research. The GEOTRACES programme includes scientists from approximately 30 nations, although the key countries are the UK, Germany, France, Spain, Sweden, Netherlands, USA, Canada, New Zealand, Australia, Japan, India and China.
-
This cross-disciplinary project resulted in a diverse data catalogue. This includes meteorology (2-D wind speed and direction, total irradiance, Photosynthetically Active Radiation/PAR, air temperature, atmospheric pressure, humidity); atmospheric composition (chemical analyses of aerosol particle composition) and biological, chemical and physical properties and processes in the photic zone (optical properties of the water column; chlorophyll concentration; photosynthetic pigment composition; primary production; bacterial production; phytoplankton and bacterial speciation; concentrations of biogenic trace compounds such as iodocarbons, methyl bromide, dimethyl sulphide/DMS and dimethyl sulphoniopropionate/DMSP; trace gas production; plankton community composition; nutrient concentration; concentrations of trace metals such as iron; salinity; temperature; Dissolved Organic Matter - particulate carbon, nitrogen and phosphorus; phytoplankton growth rates, grazing mortality and viral lysis; ammonium regeneration, nitrification and nitrogen fixation; gross production, net community production and dark community respiration; zooplankton ecology). The fieldwork included two dedicated research cruises in the eastern North Atlantic Ocean, spanning the period April - May 2004. Measurements of nutrient cycling and biological activity were monitored prior to and after deployment (IN stations) of patches fertilised with iron and phosphate relative to several (OUT stations) controls. Measurements were taken using a variety of instrumentation, including conductivity-temperature-depth (CTD) profilers with attached auxiliary sensors and acoustic Doppler current profilers (ADCPs), while incubation chambers were used for shipboard experiments. Samples were collected with Niskin bottles attached to the CTD frame at different depths in the water column and samples analysed onboard or preserved for analysis back in the laboratory. The FeeP data set was intended to advance understanding of how the supply and mutual interactions between iron and phosphate control biological activity and fluxes in the subtropical North Atlantic. The study led by the Plymouth Marine Laboratory (PML) united marine scientists from institutions across the UK and international collaborators. It was funded by the UK Natural Environment Research Council. The data are held at the British Oceanographic Data Centre (BODC) and have been incorporated into the National Oceanographic Database (NODB).
-
This dataset consists of measurements of underway meteorology, navigation and sea-surface hydrography collected aboard RRS James Cook cruise JC156, which ran between Southampton and Guadeloupe from 20 December 2017 to 01 February 2018. Navigation data were collected using an Applanix POSMV system and meteorology and sea-surface hydrography were collected using the NMF Surfmet system. Both systems were run through the duration of the cruise, excepting times for cleaning, entering and leaving port, and while alongside. This cruise formed the field component of NERC Discovery Science project 'FRidge: The impact of mid-Ocean Ridges on the Ocean's Iron Cycle'. The main objectives of the project were to: 1. Document the changes in iron supply, cycling and speciation along the diverse hydrothermal systems of the northern Mid-Atlantic Ridge. 2. Link observational science with state-of-the-art ocean modelling to assess the global influence of mid-ocean ridges on the ocean iron cycle and the sustenance of surface productivity. To deliver on these objectives, a research expedition to the Atlantic Ocean was carried out to measure trace metals, nutrients and ocean physics over and around the Mid-Atlantic Ridge. Ultimately, this will be able to address the broader question of how the amount of iron from mid-ocean ridges can influence phytoplankton growth in the open ocean. The Discovery Science project was composed of Standard Grant reference NE/N010396/1 as the lead grant with child grant NE/N009525/1. The lead grant ran from 04 September 2017 to 03 March 2020, and was led by Professor Maeve Lohan of University of Southampton, School of Ocean and Earth Sciences. The child grant ran from 01 August 2017 to 31 August 2020, and was led by Dr Alessandro Tagliabue. The data from this project will be a part of the UK contribution to the international GEOTRACES programme. Research takes place along the GEOTRACES International Section GA13. The underway discrete salinity samples data and the underway navigation, meteorology and sea-surface hydrography data have been received by BODC as raw files from the RRS James Cook, processed and quality controlled using in-house BODC procedures and are available online.
-
The dataset comprises hydrographic profiles (temperature, salinity, oxygen, fluorometer, transmissometer, irradiance) and along track measurements (bathymetry, surface meteorology, sea surface hydrography), with discrete measurements including water chemistry (organic and inorganic nutrients, particulate organic carbon and nitrogen, dissolved gases, trace metals), biology (phytoplankton, zooplankton, primary production, community respiration, chlorophyll, pigments) and atmospheric particulates (major ions, organics and trace metals). Data have been collected from meridional transects of the Atlantic Ocean (between the UK and the Falkland Islands, South Africa or South America) from 1995 to the present day. The Atlantic Meridional Transect (AMT) programme aims to study the factors determining the ecological and biogeochemical variability of planktonic ecosystems in the tropical and temperate Atlantic Ocean, and their links to atmospheric processes. The majority of the data are available to academia for re-use and re-purpose but data from recent cruises may be subject to a moratorium which allows first use for data originators. The AMT is coordinated by Andy Rees (AMT Principal Investigator) and Miss Dawn Ashby (AMT Project Officer) at the Plymouth Marine Laboratory (PML) in conjunction with the National Oceanography Centre. Since its inception the programme has involved researchers from several different countries and has acted as a platform for national and international collaboration. Data are managed by the British Oceanographic Data Centre.
-
The UK Surface Ocean-Lower Atmosphere Study (UK SOLAS) marine fieldwork data set comprises all data, marine or otherwise, collected during sea-going activities. The fieldwork included eight dedicated research cruises in the eastern North Atlantic Ocean, spanning the period 2006-2008. These cross-disciplinary missions resulted in a diverse data catalogue. This includes meteorology (3-D wind speed and direction, total irradiance, Photosynthetically Active Radiation/PAR, air temperature, atmospheric pressure, humidity, aerosol optical thickness); atmospheric composition (carbon dioxide concentration, aerosol particle counts and size spectra, chemical analyses of aerosol particle composition, cloud condensation nuclei/CCN, concentrations of pollutants such as black carbon, concentrations of free radical species such as iodine monoxide and nitrate radicals); chemical and energy-fluxes across the air-sea boundary (dust deposition rates, oxygen and nitrogen fluxes, carbon dioxide fluxes, sensible heat fluxes, latent heat fluxes, momentum fluxes); biological, chemical and physical properties and processes in the sea surface micro-layer (chlorophyll concentration, bacterial production, phytoplankton and bacterial speciation, concentrations of biogenic trace compounds such as halocarbons, nitrous oxide, dimethyl sulphide/DMS and alcohols, surfactant concentrations, halogen concentrations such as iodine, iodide and iodate); biological, chemical and photochemical properties and processes in the ocean subsurface (primary productivity, trace gas production, plankton community composition, nutrient concentration, concentrations of trace metals such as iron, aluminium, manganese, magnesium and cobalt, ligand and complex metal chemistry parameters such as heme, dust dissolution, salinity, temperature, amino acids and urea, carbonate system chemistry including alkalinity); and sea-state physics (breaking waves, wave slope, whitecaps, bubble size spectra, aerosol formation, subsurface acoustics). Additionally, time series of air-sea fluxes were measured from the Norwegian weather ship, Polarfront, between 2006 and 2009. UK SOLAS scientists also participated in the Bergen Mesocosm experiment during 2008. This simulated gas exchanges and biological, chemical and photochemical properties and processes in the sea surface micro-layer under controlled conditions. The study united atmospheric and marine scientists from institutions across the UK and international collaborators. The UK SOLAS data set was intended to advance understanding of the mutual interactions between the atmosphere and the oceans, especially the chemical exchanges that affect ocean productivity, atmospheric composition and climate. It was funded by the UK Natural Environment Research Council, as the UK's contribution to the international Surface Ocean-Lower Atmosphere Study (SOLAS). The data are held at the British Oceanographic Data Centre (BODC) and have been incorporated into the National Oceanographic Database (NODB). Data collected from non-ship based activities, for example land-based atmospheric data and data resulting from campaigns using the Facility for Airborne Atmospheric Measurements (FAAM) aircraft are held at the British Atmospheric Data Centre (BADC).
NERC Data Catalogue Service