Physical Science Basis
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
-
Data for Figure 3.36 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.36 shows observed and simulated life cycle of El Niño and La Niña events. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has four panels. All the data are provided in enso_lifecycle.nc file. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains - Composite time series of the ENSO index for El Niño events - Composite time series of the ENSO index for La Niña events - Mean duration of El Niño events - Mean duration of La Niña events in observations, CMIP5 historical-RCP4.5 and and CMIP6 historical simulations. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - ts_elnino_obs; black curves . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - ts_elnino_cmip5: The ENSO index time series in each ensemble member of CMIP5 models; blue curve and shading - ts_elnino_cmip6: The ENSO index time series in each ensemble member of CMIP6 models; red curve and shading Panel b: - ts_lanina_obs; black curves . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - ts_lanina_cmip5: The ENSO index time series in each ensemble member of CMIP5 models; blue curve and shading - ts_lanina_cmip6: The ENSO index time series in each ensemble member of CMIP6 models; red curve and shading Panel c: - duration_elnino_obs; black vertical lines and numbers in the top right box . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - duration_elnino_cmip5: El Nino duration in each ensemble member of CMIP5 models; blue box-whisker and number in the top right box - duration_elnino_cmip6; El Nino duration in each ensemble member of CMIP6 models; red dots, red box-whisker and number in the top right box . ACCESS-CM2: ens_cmip6 = 1 - 3 . ACCESS-ESM1-5: ens_cmip6 = 4 - 23 . AWI-CM-1-1-MR: ens_cmip6 = 24 - 28 . AWI-ESM-1-1-LR: ens_cmip6 = 29 . BCC-CSM2-MR: ens_cmip6 = 30 - 32 . BCC-ESM1: ens_cmip6 = 33 - 35 . CAMS-CSM1-0: ens_cmip6 = 36-38 . CanESM5-CanOE: ens_cmip6 = 39 - 41 . CanESM5: ens_cmip6 = 42 - 106 . CESM2-FV2: ens_cmip6 = 107 - 109 . CESM2: ens_cmip6 = 110 - 120 . CESM2-WACCM-FV2: ens_cmip6 = 121 - 123 . CESM2-WACCM: ens_cmip6 = 124 - 126 . CIESM: ens_cmip6 = 127 - 129 . CMCC-CM2-HR4: ens_cmip6 = 130 . CMCC-CM2-SR5: ens_cmip6 = 131 . CMCC-ESM2: ens_cmip6 = 132 . CNRM-CM6-1-HR: ens_cmip6 = 133 . CNRM-CM6-1: ens_cmip6 = 134 - 162 . CNRM-ESM2-1: ens_cmip6 = 163 - 172 . E3SM-1-0: ens_cmip6 = 173 - 177 . E3SM-1-1-ECA: ens_cmip6 = 178 . E3SM-1-1: ens_cmip6 = 179 . EC-Earth3-AerChem: ens_cmip6 = 180, 181 . EC-Earth3-CC: ens_cmip6 = 182 . EC-Earth3: ens_cmip6 = 183 - 204 . EC-Earth3-Veg-LR: ens_cmip6 = 205 - 207 . EC-Earth3-Veg: ens_cmip6 = 208 - 215 . FGOALS-f3-L: ens_cmip6 = 216 - 218 . FGOALS-g3: ens_cmip6 = 219 - 224 . FIO-ESM-2-0: ens_cmip6 = 225 - 227 . GFDL-CM4: ens_cmip6 = 228 . GFDL-ESM4: ens_cmip6 = 229 - 231 . GISS-E2-1-G-CC: ens_cmip6 = 232 . GISS-E2-1-G: ens_cmip6 = 233 - 278 . GISS-E2-1-H: ens_cmip6 = 279 - 302 . HadGEM3-GC31-LL: ens_cmip6 = 303 - 306 . HadGEM3-GC31-MM: ens_cmip6 = 307 - 310 . IITM-ESM: ens_cmip6 = 311 . INM-CM4-8: ens_cmip6 = 312 . INM-CM5-0: ens_cmip6 = 313 - 322 . IPSL-CM5A2-INCA: ens_cmip6 = 323 . IPSL-CM6A-LR: ens_cmip6 = 324 - 355 . KACE-1-0-G: ens_cmip6 = 356-358 . KIOST-ESM: ens_cmip6 = 359 . MCM-UA-1-0: ens_cmip6 = 360, 361 . MIROC6: ens_cmip6 = 362 - 411 . MIROC-ES2L: ens_cmip6 = 412 - 421 . MPI-ESM-1-2-HAM: ens_cmip6 = 422 - 424 . MPI-ESM1-2-HR: ens_cmip6 = 425 - 434 . MPI-ESM1-2-LR: ens_cmip6 = 435 - 444 . MRI-ESM2-0: ens_cmip6 = 445 - 450 . NESM3: ens_cmip6 = 451 - 455 . NorCPM1: ens_cmip6 = 456 - 485 . NorESM2-LM: ens_cmip6 = 486 - 488 . NorESM2-MM: ens_cmip6 = 489 - 490 . SAM0-UNICON: ens_cmip6 = 491 . TaiESM1: ens_cmip6 = 492 . UKESM1-0-LL: ens_cmip6 = 493 - 510 Panel d: - duration_lanina_obs; black vertical lines and numbers in the top right box . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - duration_lanina_cmip5; La Nina duration in each ensemble member of CMIP5 models; blue box-whisker and number in the top right box - duration_lanina_cmip6; La Nina duration in each ensemble member of CMIP6 models; red dots, red box-whisker and number in the top right box . ACCESS-CM2: ens_cmip6 = 1 - 3 . ACCESS-ESM1-5: ens_cmip6 = 4 - 23 . AWI-CM-1-1-MR: ens_cmip6 = 24 - 28 . AWI-ESM-1-1-LR: ens_cmip6 = 29 . BCC-CSM2-MR: ens_cmip6 = 30 - 32 . BCC-ESM1: ens_cmip6 = 33 - 35 . CAMS-CSM1-0: ens_cmip6 = 36-38 . CanESM5-CanOE: ens_cmip6 = 39 - 41 . CanESM5: ens_cmip6 = 42 - 106 . CESM2-FV2: ens_cmip6 = 107 - 109 . CESM2: ens_cmip6 = 110 - 120 . CESM2-WACCM-FV2: ens_cmip6 = 121 - 123 . CESM2-WACCM: ens_cmip6 = 124 - 126 . CIESM: ens_cmip6 = 127 - 129 . CMCC-CM2-HR4: ens_cmip6 = 130 . CMCC-CM2-SR5: ens_cmip6 = 131 . CMCC-ESM2: ens_cmip6 = 132 . CNRM-CM6-1-HR: ens_cmip6 = 133 . CNRM-CM6-1: ens_cmip6 = 134 - 162 . CNRM-ESM2-1: ens_cmip6 = 163 - 172 . E3SM-1-0: ens_cmip6 = 173 - 177 . E3SM-1-1-ECA: ens_cmip6 = 178 . E3SM-1-1: ens_cmip6 = 179 . EC-Earth3-AerChem: ens_cmip6 = 180, 181 . EC-Earth3-CC: ens_cmip6 = 182 . EC-Earth3: ens_cmip6 = 183 - 204 . EC-Earth3-Veg-LR: ens_cmip6 = 205 - 207 . EC-Earth3-Veg: ens_cmip6 = 208 - 215 . FGOALS-f3-L: ens_cmip6 = 216 - 218 . FGOALS-g3: ens_cmip6 = 219 - 224 . FIO-ESM-2-0: ens_cmip6 = 225 - 227 . GFDL-CM4: ens_cmip6 = 228 . GFDL-ESM4: ens_cmip6 = 229 - 231 . GISS-E2-1-G-CC: ens_cmip6 = 232 . GISS-E2-1-G: ens_cmip6 = 233 - 278 . GISS-E2-1-H: ens_cmip6 = 279 - 302 . HadGEM3-GC31-LL: ens_cmip6 = 303 - 306 . HadGEM3-GC31-MM: ens_cmip6 = 307 - 310 . IITM-ESM: ens_cmip6 = 311 . INM-CM4-8: ens_cmip6 = 312 . INM-CM5-0: ens_cmip6 = 313 - 322 . IPSL-CM5A2-INCA: ens_cmip6 = 323 . IPSL-CM6A-LR: ens_cmip6 = 324 - 355 . KACE-1-0-G: ens_cmip6 = 356-358 . KIOST-ESM: ens_cmip6 = 359 . MCM-UA-1-0: ens_cmip6 = 360, 361 . MIROC6: ens_cmip6 = 362 - 411 . MIROC-ES2L: ens_cmip6 = 412 - 421 . MPI-ESM-1-2-HAM: ens_cmip6 = 422 - 424 . MPI-ESM1-2-HR: ens_cmip6 = 425 - 434 . MPI-ESM1-2-LR: ens_cmip6 = 435 - 444 . MRI-ESM2-0: ens_cmip6 = 445 - 450 . NESM3: ens_cmip6 = 451 - 455 . NorCPM1: ens_cmip6 = 456 - 485 . NorESM2-LM: ens_cmip6 = 486 - 488 . NorESM2-MM: ens_cmip6 = 489 - 490 . SAM0-UNICON: ens_cmip6 = 491 . TaiESM1: ens_cmip6 = 492 . UKESM1-0-LL: ens_cmip6 = 493 - 510 Acronyms: ENSO - El Niño–Southern Oscillation, CMIP - Coupled Model Intercomparison Project, RCP - Representative Concentration Pathway, ERSST - Extended Reconstructed Sea Surface Temperature, HadISST - Hadley Centre Sea Ice and Sea Surface Temperature, ACCESS- CM2 – Australian Community Climate and Earth System Simulator coupled climate model, ACCESS- ESM – Australian Community Climate and Earth System Simulator Earth system model, AWI - Alfred Wegener Institute, BCC-CSM - Beijing Climate Center Climate System Model, CAMS - Chinese Academy of Meteorological Sciences, CanOE - Canadian Ocean Ecosystem, CESM2 - Community Earth System Model, WACCM - Whole Atmosphere Community Climate Model, CIESM - Community Integrated Earth System Model, CNCC - Centro Euro-Mediterraneo per I Cambiamenti Climatici, CNRM - Centre National de Recherches Météorologiques, E3SM - Energy Exascale Earth System Model, FGOALS - Flexible Global Ocean-Atmosphere-Land System Model, FIO-ESM - First Institute of Oceanography Earth System Model, GFDL - Geophysical Fluid Dynamics Laboratory, GISS - Goddard Institute for Space Studies, IITM - Indian Institute of Tropical Meteorology, INM - Institute for Numerical Mathematics, IPSL - Institut Pierre-Simon Laplace, KIOST-ESM - Korea Institute of Ocean Science & Technology Earth System, MIROC - Model for Interdisciplinary Research on Climate, MPI - Max-Planck-Institut für Meteorologie, NESM - Nanjing University of Information Science and Technology Earth System Model, NorCPM - Norwegian Climate Prediction Model, SAM0-UNICON - Seoul National University Atmosphere Model version 0 with a Unified Convection Scheme (SAM0-UNICON), TaiESM1 - Taiwan Earth System Model version 1, UKESM - The UK Earth System Modelling project. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and percentiles are calculated after weighting individual members with the inverse of the ensemble size of the same model. The weight is provided as the weight attribute of ens_cmip5 and ens_cmip6. If X(i) is the array, and w(i) the corresponding weight. - Mean shoud be sum_i(X(i) * w(i)) / sum_i(w(i)) - For percentile values, 1. Sort X and w so that X is in the ascending order 2. Accumulate w until i = j so that accumulated(w)/sum_i(w(i)) equals or exceeds the specified percentile level (e.g. 0.05) 3. Use X(j) or (X(j) + X(j - 1))/2 as the percentile value --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website
-
Data for FAQ 3.3, Figure 1 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). FAQ 3.3 Figure 1 shows pattern correlations between models and observations for three different variables: surface air temperature, precipitation and sea level pressure. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains all correlation pattern values displayed in the figure. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- fig_FAQ_3_3.nc: - variable: 'cor' with two dimensions: . 'vars': variables on the x-axis (same order as in the figure) . 'models': name of each models (the attribute 'project' contains mapping to 'CMIP3', 'CMIP5' or 'CMIP6') CMIP3 is the third phase of the Coupled Model Intercomparison Project. CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Var 'cor' contains the values. Coordinate 'var' is the x-axis. Coordinate 'models' is the y-axis. The attribute 'project' of the coordinate 'models' contains as string chain the mapping to CMIP3 (cyan), CMIP5 (blue) and CMIP6 (red). The multi-model mean is not part of the dataset. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.
-
Data for Figure 3.25 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.25 shows CMIP6 potential temperature and salinity biases for the global ocean, Atlantic, Pacific and Indian Oceans. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- There are panels (a), (b), (c), (d), (e), (f), (g), (h). The data is in respective subdirectories. --------------------------------------------------- List of data provided --------------------------------------------------- The dataset contains modelled and observational ocean data (1981-2010) for different ocean basins (global, Atlantic, Pacific, Indian): - Potential temperature from WOA18 observations - Salinity from WOA18 observations - Potential temperature bias (CMIP6 - WOA18) - Salinity bias (CMIP6 - WOA18) --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a - panel_a/potential_temperature_bias_global_panel_a.nc: data for colored filled contours showing temperature bias from 1981 to 2010 - panel_a/WOA_potential_temperature_global_panel_a.nc: data for black contours showing WOA18 temperature from 1981 to 2010 Panel b - panel_b/salinity_bias_global_panel_b.nc: data for colored filled contours showing salinity bias from 1981 to 2010 - panel_b/WOA_salinity_global_panel_b.nc: data for black contours showing WOA18 salinity from 1981 to 2010 Panel c - panel_c/potential_temperature_bias_atlantic_panel_c.nc: data for colored filled contours showing temperature bias from 1981 to 2010 - panel_c/WOA_potential_temperature_atlantic_panel_c.nc: data for black contours showing WOA18 temperature from 1981 to 2010 Panel d - panel_d/salinity_bias_atlantic_panel_d.nc: data for colored filled contours showing salinity bias from 1981 to 2010 - panel_d/WOA_salinity_atlantic_panel_d.nc: data for black contours showing WOA18 salinity from 1981 to 2010 Panel e - panel_e/potential_temperature_bias_pacific_panel_e.nc: data for colored filled contours showing temperature bias from 1981 to 2010 - panel_e/WOA_potential_temperature_pacific_panel_e.nc: data for black contours showing WOA18 temperature from 1981 to 2010 Panel f - panel_f/salinity_bias_pacific_panel_f.nc: data for colored filled contours showing salinity bias from 1981 to 2010 - panel_f/WOA_salinity_pacific_panel_f.nc: data for black contours showing WOA18 salinity from 1981 to 2010 Panel g - panel_g/potential_temperature_bias_indian_panel_g.nc: data for colored filled contours showing temperature bias from 1981 to 2010 - panel_g/WOA_potential_temperature_indian_panel_g.nc: data for black contours showing WOA18 temperature from 1981 to 2010 Panel h - panel_h/salinity_bias_indian_panel_h.nc: data for colored filled contours showing salinity bias from 1981 to 2010 - panel_h/WOA_salinity_indian_panel_h.nc: data for black contours showing WOA18 salinity from 1981 to 2010 CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.
-
Data for Figure 3.40 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.40 shows the observed and simulated Atlantic Multidecadal Variability (AMV). --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has six panels. Files are not separated according to the panels. --------------------------------------------------- List of data provided --------------------------------------------------- amv.obs.nc contains - Observed SST anomalies associated with the AMV pattern - Observed AMV index time series (unfiltered) - Observed AMV index time series (low-pass filtered) - Taylor statistics of the observed AMV patterns amv.hist.cmip6.nc contains - Statistical significance of the observed SST anomalies associated with the AMV pattern - Simulated SST anomalies associated with the AMV pattern - Simulated AMV index time series (unfiltered) - Simulated AMV index time series (low-pass filtered) - Taylor statistics of the simulated AMV patterns based on CMIP6 historical simulations. amv.hist.cmip5.nc contains - Simulated SST anomalies associated with the AMV pattern - Simulated AMV index time series (unfiltered) - Simulated AMV index time series (low-pass filtered) - Taylor statistics of the simulated AMV patterns based on CMIP5 historical simulations. amv.piControl.cmip6.nc contains - Simulated SST anomalies associated with the AMV pattern - Simulated AMV index time series (unfiltered) - Simulated AMV index time series (low-pass filtered) - Taylor statistics of the simulated AMV patterns based on CMIP6 piControl simulations. amv.piControl.cmip5.nc contains - Simulated SST anomalies associated with the AMV pattern - Simulated AMV index time series (unfiltered) - Simulated AMV index time series (low-pass filtered) - Taylor statistics of the simulated AMV patterns based on CMIP5 piControl simulations. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - amv_pattern_obs_ref in amv.obs.nc: shading - amv_pattern_obs_signif (dataset = 1) in amv.obs.nc: cross markers Panel b: - Multimodel ensemble mean of amv_pattern in amv.hist.cmip6.nc: shading, with their sign agreement for hatching Panel c: - tay_stats (stat = 0, 1) in amv.obs.nc: black dots - tay_stats (stat = 0, 1) in amv.hist.cmip6.nc: red crosses, and their multimodel ensemble mean for the red dot - tay_stats (stat = 0, 1) in amv.hist.cmip5.nc: blue crosses, and their multimodel ensemble mean for the blue dot Panel d: - Lag-1 autocorrelation of amv_timeseries_raw in amv.obs.nc: black horizontal lines in left . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of amv_timeseries_raw in amv.piControl.cmip5.nc: blue open box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of amv_timeseries_raw in amv.piControl.cmip6.nc: red open box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of amv_timeseries_raw in amv.hist.cmip5.nc: blue filled box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of amv_timeseries_raw in amv.hist.cmip6.nc: red filled box-whisker in the left - Lag-10 autocorrelation of amv_timeseries in amv.obs.nc: black horizontal lines in right . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of amv_timeseries in amv.piControl.cmip5.nc: blue open box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of amv_timeseries in amv.piControl.cmip6.nc: red open box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of amv_timeseries in amv.hist.cmip5.nc: blue filled box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of amv_timeseries in amv.hist.cmip6.nc: red filled box-whisker in the right Panel e: - Standard deviation of amv_timeseries_raw in amv.obs.nc: black horizontal lines in left . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries_raw in amv.piControl.cmip5.nc: blue open box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries_raw in amv.piControl.cmip6.nc: red open box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries_raw in amv.hist.cmip5.nc: blue filled box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries_raw in amv.hist.cmip6.nc: red filled box-whisker in the left - Standard deviation of amv_timeseries in amv.obs.nc: black horizontal lines in right . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries in amv.piControl.cmip5.nc: blue open box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries in amv.piControl.cmip6.nc: red open box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries in amv.hist.cmip5.nc: blue filled box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of amv_timeseries in amv.hist.cmip6.nc: red filled box-whisker in the right Panel f: - amv_timeseries in amv.obs.nc: black curves . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - amv_timeseries in amv.hist.cmip6.nc: 5th-95th percentiles in red shading, multimodel ensemble mean and its 5-95% confidence interval for red curves - amv_timeseries in amv.hist.cmip5.nc: 5th-95th percentiles in blue shading, multimodel ensemble mean for blue curve CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. SST stands for Sea Surface Temperature. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and percentiles of historical simulations of CMIP5 and CMIP6 are calculated after weighting individual members with the inverse of the ensemble size of the same model. ensemble_assign in each file provides the model number to which each ensemble member belongs. This weighting does not apply to the sign agreement calculation. piControl simulations from CMIP5 and CMIP6 consist of a single member from each model, so the weighting is not applied. Multimodel ensemble means of the pattern correlation in Taylor statistics in (c) and the autocorrelation of the index in (d) are calculated via Fisher z-transformation and back transformation. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website
-
Data for Figure 3.39 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.39 shows the observed and simulated Pacific Decadal Variability (PDV). --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has six panels. Files are not separated according to the panels. --------------------------------------------------- List of data provided --------------------------------------------------- pdv.obs.nc contains - Observed SST anomalies associated with the PDV pattern - Observed PDV index time series (unfiltered) - Observed PDV index time series (low-pass filtered) - Taylor statistics of the observed PDV patterns - Statistical significance of the observed SST anomalies associated with the PDV pattern pdv.hist.cmip6.nc contains - Simulated SST anomalies associated with the PDV pattern - Simulated PDV index time series (unfiltered) - Simulated PDV index time series (low-pass filtered) - Taylor statistics of the simulated PDV patterns based on CMIP6 historical simulations. pdv.hist.cmip5.nc contains - Simulated SST anomalies associated with the PDV pattern - Simulated PDV index time series (unfiltered) - Simulated PDV index time series (low-pass filtered) - Taylor statistics of the simulated PDV patterns based on CMIP5 historical simulations. pdv.piControl.cmip6.nc contains - Simulated SST anomalies associated with the PDV pattern - Simulated PDV index time series (unfiltered) - Simulated PDV index time series (low-pass filtered) - Taylor statistics of the simulated PDV patterns based on CMIP6 piControl simulations. pdv.piControl.cmip5.nc contains - Simulated SST anomalies associated with the PDV pattern - Simulated PDV index time series (unfiltered) - Simulated PDV index time series (low-pass filtered) - Taylor statistics of the simulated PDV patterns based on CMIP5 piControl simulations. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - ipo_pattern_obs_ref in pdv.obs.nc: shading - ipo_pattern_obs_signif (dataset = 1) in pdv.obs.nc: cross markers Panel b: - Multimodel ensemble mean of ipo_model_pattern in pdv.hist.cmip6.nc: shading, with their sign agreement for hatching Panel c: - tay_stats (stat = 0, 1) in pdv.obs.nc: black dots - tay_stats (stat = 0, 1) in pdv.hist.cmip6.nc: red crosses, and their multimodel ensemble mean for the red dot - tay_stats (stat = 0, 1) in pdv.hist.cmip5.nc: blue crosses, and their multimodel ensemble mean for the blue dot Panel d: - Lag-1 autocorrelation of tpi in pdv.obs.nc: black horizontal lines in left . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of tpi in pdv.piControl.cmip5.nc: blue open box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of tpi in pdv.piControl.cmip6.nc: red open box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of tpi in pdv.hist.cmip5.nc: blue filled box-whisker in the left - Multimodel ensemble mean and percentiles of lag-1 autocorrelation of tpi in pdv.hist.cmip6.nc: red filled box-whisker in the left - Lag-10 autocorrelation of tpi_lp in pdv.obs.nc: black horizontal lines in right . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of tpi_lp in pdv.piControl.cmip5.nc: blue open box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of tpi_lp in pdv.piControl.cmip6.nc: red open box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of tpi_lp in pdv.hist.cmip5.nc: blue filled box-whisker in the right - Multimodel ensemble mean and percentiles of lag-10 autocorrelation of tpi_lp in pdv.hist.cmip6.nc: red filled box-whisker in the right Panel e: - Standard deviation of tpi in pdv.obs.nc: black horizontal lines in left . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of standard deviation of tpi in pdv.piControl.cmip5.nc: blue open box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of tpi in pdv.piControl.cmip6.nc: red open box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of tpi in pdv.hist.cmip5.nc: blue filled box-whisker in the left - Multimodel ensemble mean and percentiles of standard deviation of tpi in pdv.hist.cmip6.nc: red filled box-whisker in the left - Standard deviation of tpi_lp in pdv.obs.nc: black horizontal lines in right . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - Multimodel ensemble mean and percentiles of standard deviation of tpi_lp in pdv.piControl.cmip5.nc: blue open box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of tpi_lp in pdv.piControl.cmip6.nc: red open box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of tpi_lp in pdv.hist.cmip5.nc: blue filled box-whisker in the right - Multimodel ensemble mean and percentiles of standard deviation of tpi_lp in pdv.hist.cmip6.nc: red filled box-whisker in the right Panel f: - tpi_lp in pdv.obs.nc: black curves . ERSSTv5: dataset = 1 . HadISST: dataset = 2 . COBE-SST2: dataset = 3 - tpi_lp in pdv.hist.cmip6.nc: 5th-95th percentiles in red shading, multimodel ensemble mean and its 5-95% confidence interval for red curves - tpi_lp in pdv.hist.cmip5.nc: 5th-95th percentiles in blue shading, multimodel ensemble mean for blue curve CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. SST stands for Sea Surface Temperature. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and percentiles of historical simulations of CMIP5 and CMIP6 are calculated after weighting individual members with the inverse of the ensemble size of the same model. ensemble_assign in each file provides the model number to which each ensemble member belongs. This weighting does not apply to the sign agreement calculation. piControl simulations from CMIP5 and CMIP6 consist of a single member from each model, so the weighting is not applied. Multimodel ensemble means of the pattern correlation in Taylor statistics in (c) and the autocorrelation of the index in (d) are calculated via Fisher z-transformation and back transformation. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website
-
Data for Figure 3.37 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.37 shows observed and simulated seasonality of ENSO. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure has two panels. All the data are provided in enso_seasonality.nc. --------------------------------------------------- List of data provided --------------------------------------------------- This dataset contains - Climatological standard deviation of the ENSO index - A seasonality metric of the ENSO index in observations, CMIP5 historical-RCP4.5 and CMIP6 historical simulations. --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- Panel a: - stdv_enso_obs; black curves . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - stdv_enso_cmip5: Climatological standard deviation of the ENSO index time series in each ensemble member of CMIP5 models blue curve and shading - stdv_enso_cmip6: Climatological standard deviation of the ENSO index time series in each ensemble member of CMIP6 models; red curve and shading . ACCESS-CM2: ens_cmip6 = 1 - 3 . ACCESS-ESM1-5: ens_cmip6 = 4 - 23 . AWI-CM-1-1-MR: ens_cmip6 = 24 - 28 . AWI-ESM-1-1-LR: ens_cmip6 = 29 . BCC-CSM2-MR: ens_cmip6 = 30 - 32 . BCC-ESM1: ens_cmip6 = 33 - 35 . CAMS-CSM1-0: ens_cmip6 = 36-38 . CanESM5-CanOE: ens_cmip6 = 39 - 41 . CanESM5: ens_cmip6 = 42 - 106 . CESM2-FV2: ens_cmip6 = 107 - 109 . CESM2: ens_cmip6 = 110 - 120 . CESM2-WACCM-FV2: ens_cmip6 = 121 - 123 . CESM2-WACCM: ens_cmip6 = 124 - 126 . CIESM: ens_cmip6 = 127 - 129 . CMCC-CM2-HR4: ens_cmip6 = 130 . CMCC-CM2-SR5: ens_cmip6 = 131 . CMCC-ESM2: ens_cmip6 = 132 . CNRM-CM6-1-HR: ens_cmip6 = 133 . CNRM-CM6-1: ens_cmip6 = 134 - 162 . CNRM-ESM2-1: ens_cmip6 = 163 - 172 . E3SM-1-0: ens_cmip6 = 173 - 177 . E3SM-1-1-ECA: ens_cmip6 = 178 . E3SM-1-1: ens_cmip6 = 179 . EC-Earth3-AerChem: ens_cmip6 = 180, 181 . EC-Earth3-CC: ens_cmip6 = 182 . EC-Earth3: ens_cmip6 = 183 - 204 . EC-Earth3-Veg-LR: ens_cmip6 = 205 - 207 . EC-Earth3-Veg: ens_cmip6 = 208 - 215 . FGOALS-f3-L: ens_cmip6 = 216 - 218 . FGOALS-g3: ens_cmip6 = 219 - 224 . FIO-ESM-2-0: ens_cmip6 = 225 - 227 . GFDL-CM4: ens_cmip6 = 228 . GFDL-ESM4: ens_cmip6 = 229 - 231 . GISS-E2-1-G-CC: ens_cmip6 = 232 . GISS-E2-1-G: ens_cmip6 = 233 - 278 . GISS-E2-1-H: ens_cmip6 = 279 - 302 . HadGEM3-GC31-LL: ens_cmip6 = 303 - 306 . HadGEM3-GC31-MM: ens_cmip6 = 307 - 310 . IITM-ESM: ens_cmip6 = 311 . INM-CM4-8: ens_cmip6 = 312 . INM-CM5-0: ens_cmip6 = 313 - 322 . IPSL-CM5A2-INCA: ens_cmip6 = 323 . IPSL-CM6A-LR: ens_cmip6 = 324 - 355 . KACE-1-0-G: ens_cmip6 = 356-358 . KIOST-ESM: ens_cmip6 = 359 . MCM-UA-1-0: ens_cmip6 = 360, 361 . MIROC6: ens_cmip6 = 362 - 411 . MIROC-ES2L: ens_cmip6 = 412 - 421 . MPI-ESM-1-2-HAM: ens_cmip6 = 422 - 424 . MPI-ESM1-2-HR: ens_cmip6 = 425 - 434 . MPI-ESM1-2-LR: ens_cmip6 = 435 - 444 . MRI-ESM2-0: ens_cmip6 = 445 - 450 . NESM3: ens_cmip6 = 451 - 455 . NorCPM1: ens_cmip6 = 456 - 485 . NorESM2-LM: ens_cmip6 = 486 - 488 . NorESM2-MM: ens_cmip6 = 489 - 490 . SAM0-UNICON: ens_cmip6 = 491 . TaiESM1: ens_cmip6 = 492 . UKESM1-0-LL: ens_cmip6 = 493 - 510 Panel b: - seasonality_enso_obs; black vertical lines and numbers in the top right box . ERSSTv5, dashed lines: dataset = 1 . HadISST, solid lines: dataset = 2 - seasonality_enso_cmip5; Seasonality metric in each ensemble member of CMIP5 models; blue box-whisker and number in the top right box - seasonality_enso_cmip6; Seasonality metric in each ensemble member of CMIP6 models; red dots, with their multimodal ensemble mean and percentiles for the red box-whisker and number in the top right box . ACCESS-CM2: ens_cmip6 = 1 - 3 . ACCESS-ESM1-5: ens_cmip6 = 4 - 23 . AWI-CM-1-1-MR: ens_cmip6 = 24 - 28 . AWI-ESM-1-1-LR: ens_cmip6 = 29 . BCC-CSM2-MR: ens_cmip6 = 30 - 32 . BCC-ESM1: ens_cmip6 = 33 - 35 . CAMS-CSM1-0: ens_cmip6 = 36-38 . CanESM5-CanOE: ens_cmip6 = 39 - 41 . CanESM5: ens_cmip6 = 42 - 106 . CESM2-FV2: ens_cmip6 = 107 - 109 . CESM2: ens_cmip6 = 110 - 120 . CESM2-WACCM-FV2: ens_cmip6 = 121 - 123 . CESM2-WACCM: ens_cmip6 = 124 - 126 . CIESM: ens_cmip6 = 127 - 129 . CMCC-CM2-HR4: ens_cmip6 = 130 . CMCC-CM2-SR5: ens_cmip6 = 131 . CMCC-ESM2: ens_cmip6 = 132 . CNRM-CM6-1-HR: ens_cmip6 = 133 . CNRM-CM6-1: ens_cmip6 = 134 - 162 . CNRM-ESM2-1: ens_cmip6 = 163 - 172 . E3SM-1-0: ens_cmip6 = 173 - 177 . E3SM-1-1-ECA: ens_cmip6 = 178 . E3SM-1-1: ens_cmip6 = 179 . EC-Earth3-AerChem: ens_cmip6 = 180, 181 . EC-Earth3-CC: ens_cmip6 = 182 . EC-Earth3: ens_cmip6 = 183 - 204 . EC-Earth3-Veg-LR: ens_cmip6 = 205 - 207 . EC-Earth3-Veg: ens_cmip6 = 208 - 215 . FGOALS-f3-L: ens_cmip6 = 216 - 218 . FGOALS-g3: ens_cmip6 = 219 - 224 . FIO-ESM-2-0: ens_cmip6 = 225 - 227 . GFDL-CM4: ens_cmip6 = 228 . GFDL-ESM4: ens_cmip6 = 229 - 231 . GISS-E2-1-G-CC: ens_cmip6 = 232 . GISS-E2-1-G: ens_cmip6 = 233 - 278 . GISS-E2-1-H: ens_cmip6 = 279 - 302 . HadGEM3-GC31-LL: ens_cmip6 = 303 - 306 . HadGEM3-GC31-MM: ens_cmip6 = 307 - 310 . IITM-ESM: ens_cmip6 = 311 . INM-CM4-8: ens_cmip6 = 312 . INM-CM5-0: ens_cmip6 = 313 - 322 . IPSL-CM5A2-INCA: ens_cmip6 = 323 . IPSL-CM6A-LR: ens_cmip6 = 324 - 355 . KACE-1-0-G: ens_cmip6 = 356-358 . KIOST-ESM: ens_cmip6 = 359 . MCM-UA-1-0: ens_cmip6 = 360, 361 . MIROC6: ens_cmip6 = 362 - 411 . MIROC-ES2L: ens_cmip6 = 412 - 421 . MPI-ESM-1-2-HAM: ens_cmip6 = 422 - 424 . MPI-ESM1-2-HR: ens_cmip6 = 425 - 434 . MPI-ESM1-2-LR: ens_cmip6 = 435 - 444 . MRI-ESM2-0: ens_cmip6 = 445 - 450 . NESM3: ens_cmip6 = 451 - 455 . NorCPM1: ens_cmip6 = 456 - 485 . NorESM2-LM: ens_cmip6 = 486 - 488 . NorESM2-MM: ens_cmip6 = 489 - 490 . SAM0-UNICON: ens_cmip6 = 491 . TaiESM1: ens_cmip6 = 492 . UKESM1-0-LL: ens_cmip6 = 493 - 510 Acronyms - ENSO - El Niño–Southern Oscillation, CMIP - Coupled Model Intercomparison Project, RCP - Representative Concentration Pathway, ERSST - Extended Reconstructed Sea Surface Temperature, HadISST - Hadley Centre Sea Ice and Sea Surface Temperature, ACCESS- CM2 – Australian Community Climate and Earth System Simulator coupled climate model, ACCESS- ESM – Australian Community Climate and Earth System Simulator Earth system model, AWI - Alfred Wegener Institute, BCC-CSM - Beijing Climate Center Climate System Model, CAMS - Chinese Academy of Meteorological Sciences, CanOE - Canadian Ocean Ecosystem, CESM2 - Community Earth System Model, WACCM - Whole Atmosphere Community Climate Model, CIESM - Community Integrated Earth System Model, CNCC - Centro Euro-Mediterraneo per I Cambiamenti Climatici, CNRM - Centre National de Recherches Météorologiques, E3SM - Energy Exascale Earth System Model, FGOALS - Flexible Global Ocean-Atmosphere-Land System Model, FIO-ESM - First Institute of Oceanography Earth System Model, GFDL - Geophysical Fluid Dynamics Laboratory, GISS - Goddard Institute for Space Studies, IITM - Indian Institute of Tropical Meteorology, INM - Institute for Numerical Mathematics, IPSL - Institut Pierre-Simon Laplace, KIOST-ESM - Korea Institute of Ocean Science & Technology Earth System, MIROC - Model for Interdisciplinary Research on Climate, MPI - Max-Planck-Institut für Meteorologie, NESM - Nanjing University of Information Science and Technology Earth System Model, NorCPM - Norwegian Climate Prediction Model, SAM0-UNICON - Seoul National University Atmosphere Model version 0 with a Unified Convection Scheme (SAM0-UNICON), TaiESM1 - Taiwan Earth System Model version 1, UKESM - The UK Earth System Modelling project. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- Multimodel ensemble means and percentiles are calculated after weighting individual members with the inverse of the ensemble size of the same model. The weight is provided as the weight attribute of ens_cmip5 and ens_cmip6. If X(i) is the array, and w(i) the corresponding weight. - Mean shoud be sum_i(X(i) * w(i)) / sum_i(w(i)) - For percentile values, 1. Sort X and w so that X is in the ascending order 2. Accumulate w until i = j so that accumulated(w)/sum_i(w(i)) equals or exceeds the specified percentile level (e.g. 0.05) 3. Use X(j) or (X(j) + X(j - 1))/2 as the percentile value --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo - Link to the figure on the IPCC AR6 website
-
Data for FAQ 3.2, Figure 1 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). FAQ 3.2, Figure 1 shows annual, decadal and multi-decadal variations in average global surface temperature. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- The figure technically has three panels, but they are not labelled. So the datasets are stored just in the main figure folder. --------------------------------------------------- List of data provided --------------------------------------------------- Dataset contains modelled GSAT anomalies from MPI-ESM grand ensemble (1950-2019): - On annual scale - On decadal scale - On multi-decadal scale --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- - annual_gsat_anomalies_mpi_esm_grand_ens.csv has data for the left panel, GSAT anomalies from 1950 to 2019 from MPI-ESM grand ensemble (black, light green, light marsh green, light dark green lines) - decadal_gsat_anomalies_mpi_esm_grand_ens.csv has data for the middle panel, GSAT anomalies from 1950 to 2019 from MPI-ESM grand ensemble (black, light green, light marsh green, light dark green lines) - multi_decadal_gsat_anomalies_mpi_esm_grand_ens.csv has data for the right panel, GSAT anomalies from 1950 to 2019 from MPI-ESM grand ensemble (black, light green, light marsh green, light dark green lines) GSAT stands for Global Surface Air Temperature. MPI-ESM is a comprehensive Earth-System Model, consisting of component models for the ocean, the atmosphere and the land surface. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the figure on the IPCC AR6 website - Link to the GitHub repo with code for the figure
-
This dataset collection contains datasets relating to the figures found in the IPCC Sixth Assessment Report (AR6) Chapter 3: Human influence on the climate system. When using datasets from this collection please use the citation indicated in each specific dataset rather than the citation for the entire collection. Figure datasets related to this collection: - data for Figure 3.2 - data for Figure 3.3 - data for Figure 3.4 - data for Figure 3.5 - data for Figure 3.6 - data for Figure 3.7 - data for Figure 3.8 - data for Figure 3.9 - data for Figure 3.10 - data for Figure 3.11 - data for Figure 3.12 - data for Figure 3.13 - data for Figure 3.14 - data for Figure 3.15 - data for Figure 3.16 - data for Figure 3.17 - data for Figure 3.18 - data for Figure 3.19 - data for Figure 3.20 - data for Figure 3.21 - data for Figure 3.22 - data for Figure 3.23 - data for Figure 3.24 - data for Figure 3.25 - data for Figure 3.26 - data for Figure 3.27 - input data for Figure 3.27 - data for Figure 3.28 - input data for Figure 3.28 - data for Figure 3.29 - data for Figure 3.30 - data for Figure 3.31 - data for Figure 3.32 - data for Figure 3.33 - data for Figure 3.34 - data for Figure 3.35 - data for Figure 3.36 - data for Figure 3.37 - data for Figure 3.38 - data for Figure 3.39 - data for Figure 3.40 - data for Figure 3.41 - data for Figure 3.42 - data for Figure 3.43 - data for Figure 3.44 - data for Cross-Chapter Box 3.1.1 - data for Cross-Chapter Box 3.2.1 - data for FAQ 3.1, Figure 1 - data for FAQ 3.2., Figure 1 - data for FAQ 3.3, Figure 1
-
Data for Figure 3.8 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.8 shows assessed contributions to observed warming, and supporting lines of evidence. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- List of data provided --------------------------------------------------- The dataset contains the drivers of the attributable warming (2010-2019 relative to 1850-1900): - Observed global warming (2010-2019) - Global warming and its drivers reported in the literature sources (2010-2019) - Global warming and its drivers calculated from CMIP6 models (2010-2019) --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- - drivers_observed_warming.csv has data for the shadings and markers in the figure. Additional details of data provided in relation to figure in the file header (BADC-CSV file). --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.
-
Data for Figure 3.20 from Chapter 3 of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). Figure 3.20 shows means and trends in Arctic sea ice area (SIA) in September and Antarctic SIA in February for 1979-2017 from CMIP5 and CMIP6 models. --------------------------------------------------- How to cite this dataset --------------------------------------------------- When citing this dataset, please include both the data citation below (under 'Citable as') and the following citation for the report component from which the figure originates: Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005. --------------------------------------------------- Figure subpanels --------------------------------------------------- Technically figure has four panels, but they are not named so the data is stored in the parent directory. --------------------------------------------------- List of data provided --------------------------------------------------- Data is for September Arctic and February Antarctic Sea Ice Areas (SIAs) and their trends from models and observations: - SIAs from Bootstrap, NASA-Team and OSISAF (1979-2017) - SIAs from CMIP5 historical-rcp45 experiment (1979-2017) - SIAs from CMIP6 historical-ssp245 experiment (1979-2017) --------------------------------------------------- Data provided in relation to figure --------------------------------------------------- - sia_point_nh_cmip5.csv has Arctic sea ice area means and decadal trends for September calculated from CMIP5 and observations from 1979-2017 - sia_point_nh_cmip6.csv has Arctic sea ice area means and decadal trends for September calculated from CMIP6 and observations from 1979-2017 - sia_point_sh_cmip5.csv has Antarctic sea ice area means and decadal trends for February calculated from CMIP5 and observations from 1979-2017 - sia_point_sh_cmip6.csv has Antarctic sea ice area means and decadal trends for February calculated from CMIP6 and observations from 1979-2017 Additional details of data provided in relation to figure in the files header (BADC-CSV files) CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. --------------------------------------------------- Notes on reproducing the figure from the provided data --------------------------------------------------- The black line which is shown in each panel is written in the comments. --------------------------------------------------- Sources of additional information --------------------------------------------------- The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the report component containing the figure (Chapter 3) - Link to the Supplementary Material for Chapter 3, which contains details on the input data used in Table 3.SM.1 - Link to the code for the figure, archived on Zenodo.
NERC Data Catalogue Service