Hydrography
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Scale
Resolution
-
This is a web map view service for the Integrated Hydrological Units (IHU) of the United Kingdom. The IHU define geographical reference units for hydrological purposes including river flow measurement and hydrometric data collection in the UK. The layers in this service represent the following component polygon layers: Hydrometric Areas with Coastline; Hydrometric Areas without Coastline; Groups; Sections; and Catchments. Each layer represents a different level of spatial detail. The coarsest level, Hydrometric Areas, is provided in two versions to meet differing user needs. Each Hydrometric Area is made up of one or more Groups. Each Group carries a name constructed from names of the major river flowing through the Group, the major river flowing into the Group, the major river into which the Group flows, and in some cases also from local county names. Each Group is made up of smaller units called Sections. A Section is the drainage area of a watercourse between two confluences. Only confluences of named watercourses were considered. Similarly to Groups, each Section carries a name constructed from names of the major river flowing through the Section, the major river flowing into the Section, and the major river into which the Section flows. Catchments represent the full area upstream from an outlet of every Section. Polygons within each layer do not have gaps and, with the exception of Catchments, polygons within one layer do not overlap. The Hydrometric Areas with Coastline layer covers Great Britain and Northern Ireland, but all other layers currently cover Great Britain only as no dataset with river geometries and names with suitable detail is available for Northern Ireland.
-
This is a web map service of the UKCEH digital river network of Great Britain (1:50,000). It is a river centreline network, based originally on OS 1:50,000 mapping. There are four layers: rivers; canals; surface pipes (man-made channels such as aqueducts and leats) and miscellaneous channels (including estuary and lake centre-lines and some underground channels).
-
These data include greenhouse gas concentrations and physio-chemical water properties for the Clyde estuary in Scotland to support understanding of the GHG sources and sinks and their associated mechanisms in a highly stratified, temperate urban estuary. These measurements look at the changes in GHG along the Clyde estuary taking measurements from land to sea down the estuary on the ebb tide at both the surface and bed so the impact of location, river flow, wastewater treatment outflows and stratifications can be understood. Full details about this dataset can be found at https://doi.org/10.5285/a22b495e-b2cd-43cd-95b7-8712b64dc0da
-
This dataset is model output from the GR4J lumped catchment hydrology model. It provides 500 model realisations of daily river flow, in cubic metres per second (cumecs, m3/s), for 303 UK catchments for the period between 1891-2015. The modelled catchments are part of the National River Flow Archive (NRFA) (https://nrfa.ceh.ac.uk/) and provide good spatial coverage across the UK. These flow reconstructions were produced as part of the Research Councils UK (RCUK) funded Historic Droughts and IMPETUS projects, to provide consistent modelled daily flow data across the UK from 1891-2015, with estimates of uncertainty. This dataset is an outcome of the Historic Droughts Project (grant number: NE/L01016X/1). The data are provided in two formats to help the user account for uncertainty: (1) a 500-member ensemble of daily river flow time series for each catchment, with their corresponding model parameters and evaluation metric scores of model performance. (2) a single river flow time series (one corresponding to the top run of the 500), with the maximum and minimum daily limits of the 500 ensemble members. Full details about this dataset can be found at https://doi.org/10.5285/f710bed1-e564-47bf-b82c-4c2a2fe2810e
-
This dataset is a model output, from the Grid-to-Grid hydrological model driven by observed climate data (CEH-GEAR rainfall and MORECS potential evaporation). It provides daily mean river flow (m3/s) for 260 catchments, for the period 1960 to 2015. The catchments correspond to locations of NRFA gauging stations (http://nrfa.ceh.ac.uk/). The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity (http://www.mariusdroughtproject.org/). Full details about this dataset can be found at https://doi.org/10.5285/5f3c1a02-d5c4-4faa-9353-e8b68ce2ace2
-
This dataset is a model output, from the Grid-to-Grid hydrological model driven by weather@home2 climate model data. It provides a 100-member ensemble of monthly mean flow (m3/s) and soil moisture (mm water/m soil) on a 1 km grid for the following time periods: historical baseline (HISTBS: 1900-2006), near-future (NF: 2020-2049) and far-future (FF: 2070-2099). It also includes a baseline period (BS: 1975-2004). To aid interpretation, two additional spatial datasets are provided: - Digitally-derived catchment areas on a 1km x 1km grid - Estimated locations of flow gauging stations on a 1km x 1km grid and as a csv file. The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity. Full details about this dataset can be found at https://doi.org/10.5285/3b90962e-6fc8-4251-853e-b9683e37f790
-
The dataset contains high-resolution flow transects that were obtained from representative sites at six rivers within sub-catchments of contrasting geology (clay, greensand, chalk) of the Hampshire River Avon catchment (UK). Data were obtained from field-based measurements in seasonal campaigns conducted between spring 2013 and winter 2014. Full details about this dataset can be found at https://doi.org/10.5285/16df35a9-90ab-4273-8b6c-5ef3648ec76d
-
This is part of an ongoing long-term monitoring dataset of surface temperature, surface oxygen, water clarity, water chemistry and phytoplankton chlorophyll a from fortnightly sampling at the South Basin of Windermere in Cumbria, England that began in 1945 for some variables. The data have been collected by the UK Centre for Ecology & Hydrology (UKCEH). The data available to download comprise surface temperature (TEMP) in degree Celsius, surface oxygen saturation (OXYG) in % air-saturation, Secchi depth (SECC) in metres, alkalinity (ALKA) in µg per litre as CaCO3 and pH. Total ammoniacal nitrogen (NH4N), total oxidised nitrogen (TON), soluble reactive phosphate (PO4P), total phosphorus (TOTP), dissolved reactive silicon expressed as SiO2 (SIO2) and phytoplankton chlorophyll a (TOCA) are all given in µg per litre. Water samples are based on a sample integrated from 0 to 7m. All data are from January 2023 until the end of 2023. Full details about this dataset can be found at https://doi.org/10.5285/23dfa136-82f4-4c96-8df0-f44c1798f7b4
-
This dataset contains the concentration of eleven antibiotics (trimethoprim, oxytetracycline, ciprofloxacin, azithromycin, cefotaxime, doxycycline, sulfamethoxazole, erythromycin, clarithromycin, ofloxacin, norfloxacin), three decongestants (naphazoline, oxymetazoline, xylometazoline) and the antiviral drug oseltamivir's active metabolite, oseltamivir carboxylate, measured at 21 locations within the River Thames catchment in England. The measurements were taken weekly during November 2009, once in March 2010 and once in May 2011, with the aim to quantify pharmaceutical usage during the influenza pandemic of 2009 and how this compares to inter-pandemic drug use. River samples were acquired by grab samples in glass jars and analysed by liquid chromatography tandem mass spectrometry (LC MS). Two wastewater treatment plants (WWTPs) in southern England (Benson and Oxford) were also sampled during the peak of the second wave of the 2009 influenza A[H1N1]pdm09 pandemic (10-11 November 2009) and on 15 May 2011 using an automated sampler set to acquired hourly (time proportional) samples from the influent and effluent of the WWTPs. The WWTPs are the source for all the drugs found in the river, hence, these were studied to understand the differential fate of the analytes in the two very different WWTPs. Flows for the WWTP and River sampling locations are presented for each of the sampling times to allow for determining hourly loads for the WWTP and daily loads for the river. Full details about this dataset can be found at https://doi.org/10.5285/8af983e4-e97d-4c07-a34d-753243fa283b
-
This dataset contains high-resolution (5-minute) raw, atmospheric corrected and mean sea level adjusted water level data for 9 flood storage areas (FSAs) in the Littlestock Brook catchment (a tributary of the River Evenlode, Thames Basin) from 2018 to 2022. The dataset also includes the estimated 9 x FSA stored volume time-series, estimated using a depth-stored volume lookup table for each FSA, produced from a digital elevation model of each feature and a depth-area-volume toolset. The annual barometric pressure time-series used to correct water level is also provided. This dataset was collected by UKCEH as part of a hydrological monitoring programme for the Littlestock Brook Natural Flood Management scheme. This work was supported by the SPITFIRE NERC DTP (NE/L002531/1) and the SCENARIO NERC DTP (NE/L002566/1). Full details about this dataset can be found at https://doi.org/10.5285/cf70f798-442a-4775-963c-b6600023830f
NERC Data Catalogue Service