EARTH SCIENCE > Spectral/Engineering > Radar
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Update frequencies
-
This dataset includes double-difference interferograms derived from TerraSAR-X synthetic aperture radar data acquired at the grounding line downstream of Engelhardt Subglacial Lake on the Gould Coast, Antarctica, in September 2012, April 2016, July 2023 and October 2023. The September 2012, July 2023 and October 2023 interferograms were generated by Oliver J. Marsh (British Antarctic Survey) using the Gamma Remote Sensing software and geocoded with the Bedmap2 DEM. The April 2016 interferogram was generated by Dana Floricioiu (DLR, German Aerospace Center) using DLR''s Integrated Wide Area Processor (IWAP; Rodriguez et al, 2013). The image processing information, acquisition time and coincident modelled tide heights for all data used to derive the TerraSAR-X interferograms are provided in the lineage section. For each interferogram (September 2012, April 2016, July 2023 and October 2023) we provide a shapefile of the derived grounding line, which was manually traced along the landward boundary of the dense fringe belt associated with the vertical tidal motion of the ice (Point F). This dataset was produced as part of the study: Freer et al. (2024) Synchronous lake drainage and grounding line retreat at Engelhardt Subglacial Lake, West Antarctica. Journal of Geophysical Research: Earth Surface. Funding: Bryony I. D. Freer (project lead) was supported by Natural Environment Research Council (NERC) Satellite Data in Environmental Science (SENSE) Centre for Doctoral Training (grant no. NE/T00939X/1). Dana Floricioiu (dataset creator) was supported by DLR''s Polar Monitor II and Antarctic Ice Sheet CCI projects (ESA/Contract No. 4000126813/18/I-NB). Images were acquired under DLR TerraSAR-X science data proposal HYD3673 (PI Dana Floricioiu).
-
An airborne radar survey was flown during the austral summer of 2015/16 over the Foundation Ice Stream, Bungenstock Ice Rise, and the Filchner ice shelf as part of the 5-year Filchner Ice Shelf System (FISS) project. This project was a NERC-funded (grant reference number: NE/L013770/1) collaborative initiative between the British Antarctic Survey, the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. The 2015/16 aerogeophysics survey acquired ~7,000 line km of aerogeophysical data with a particular focus on the Foundation Ice Stream. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data. This is Version 2 of the dataset. This version differs from Version 1, as follows: 1. The variables "fast_time" has been updated due to errors found. The error in the variable related to an error in the sampling frequency of the system, which should have been 24 MHz instead of 22MHz. This has been updated. 2. The units in the "surface_pick_layerData" and the "bed_pick_layerData" variables should have been "samples relative to the BAS radar system", instead of "microseconds". This has been corrected. 3. The metadata in this DMS entry and in the NetCDF files has also been updated. Mainly, the sampling frequency has been modified from 22 MHz to 24 MHz to reflect the radar system characteristics. This also affected the value provided for the radar system resolution and sampling interval, which have both been updated in the metadata. 4. The SEGY sampling interval value (byte numbers: 117-118 (SI)) has also been updated to reflect the change in sampling frequency mentioned above. All other variables remain unchanged. Note that these changes do not affect the radar data or the associated radar-derived data in the files.
-
During the austral summer of 2015/16, a major international collaboration funded by the European Space Agency (ESA) and with in-kind contribution from the British Antarctic Survey, the Technical University of Denmark (DTU), the Norwegian Polar Institute (NPI) and the US National Science Foundation (NSF), acquired ~38,000 line km of aerogeophysical data. The primary objective of the POLARGAP campaign was to carry out an airborne gravity survey covering the southern polar gap of the ESA gravity field mission GOCE, beyond the coverage of the GOCE orbit (south of 83.5degS), however aeromagnetics and ice-penetrating radar data were also opportunistically acquired. This survey covers the South Pole and Recovery Lakes, as well as parts of the Support Force, Foundation and Recovery Glaciers. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an air-sea gravity meter, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data. This is Version 2 of the dataset. This version differs from Version 1, as follows: 1. The variables "fast_time" and "UTC_time_layerData" have been updated due to errors found. The error in the fast_time variable related to an error in the sampling frequency of the system, which should have been 24 MHz instead of 22MHz. This has been updated. The error in the "UTC_time_layerData" related to a rounding issue which affected the precision of this variable. This has been updated. 2. The units in the "surface_pick_layerData" and the "bed_pick_layerData" variables should have been "samples relative to the BAS radar system", instead of "microseconds". This has been corrected. 3. The metadata in this DMS entry and in the NetCDF files has also been updated. Mainly, the sampling frequency has been modified from 22 MHz to 24 MHz to reflect the radar system characteristics. This also affected the value provided for the radar system resolution and sampling interval, which have both been updated in the metadata. 4. The SEGY sampling interval value (byte numbers: 117-118 (SI)) has also been updated to reflect the change in sampling frequency mentioned above. All other variables remain unchanged. Note that these changes do not affect the radar data or the associated radar-derived data in the files.
-
Three separate airborne radar surveys were flown during the austral summer of 2016/17 over the Filchner Ice Shelf and Halley Ice Shelf (West Antarctica), and over the outlet glacier flows of the English Coast (western Palmer Land, Antarctic Peninsula) during the Filchner Ice Shelf System (FISS) project. This project was a NERC-funded (grant reference number: NE/L013770/1) collaborative initiative between the British Antarctic Survey, the National Oceanography Centre, the Met Office Hadley Centre, University College London, the University of Exeter, Oxford University, and the Alfred Wenger Institute to investigate how the Filchner Ice Shelf might respond to a warmer world, and what the impact of sea-level rise could be by the middle of this century. The 2016/17 aerogeophysics surveys acquired a total of ~26,000 line km of aerogeophysical data. The FISS survey consisted of 17 survey flights totalling ~16,000 km of radar data over the Support Force, Recovery, Slessor, and Bailey ice streams of the Filchner Ice Shelf. The Halley Ice Shelf survey consisted of ~4,600 km spread over 5 flights and covering the area around the BAS Halley 6 station and the Brunt Ice Shelf. The English Coast survey consisted of ~5,000 km spread over 7 flights departing from the Sky Blu basecamp and linking several outlet glacier flows and the grounding line of the western Palmer Land, including the ENVISAT, CRYOSAT, GRACE, Landsat, Sentinel, ERS, Hall, Nikitin and Lidke ice streams. Our Twin Otter aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, an iMAR strapdown gravity system, and a new ice-sounding radar system (PASIN-2). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data. This is Version 2 of the dataset. This version differs from Version 1, as follows: 1. The variables "fast_time" has been updated due to errors found. The error in the variable related to an error in the sampling frequency of the system, which should have been 24 MHz instead of 22MHz. This has been updated. 2. The units in the "surface_pick_layerData" and the "bed_pick_layerData" variables should have been "samples relative to the BAS radar system", instead of "microseconds". This has been corrected. 3. The metadata in this DMS entry and in the NetCDF files has also been updated. Mainly, the sampling frequency has been modified from 22 MHz to 24 MHz to reflect the radar system characteristics. This also affected the value provided for the radar system resolution and sampling interval, which have both been updated in the metadata. 4. The SEGY sampling interval value (byte numbers: 117-118 (SI)) has also been updated to reflect the change in sampling frequency mentioned above. All other variables remain unchanged. Note that these changes do not affect the radar data or the associated radar-derived data in the files.
-
This dataset contains data from three ground-penetrating radar surveys undertaken to image ice thickness and englacial stratigraphy during the 2019-20 Antarctic field season, as part of the International Thwaites Glacier Collaboration (funded by NERC and NSF). The ground-penetrating radar data are presented as SEG-Y, along with the GPS tracks of the surveys, presented as GPS Exchange Format (GPX). The subglacial extensions of ridges of three nunataks close to Pine Island and Larter Glaciers in the Hudson Mountains region were surveyed, with the aim of determining their suitability as subglacial bedrock drill sites. Those nunataks are Winkie Nunatak (74 degrees 51'' 41.0" S/99 degrees 46'' 49.4" W), Evans Knoll (74 degrees 51'' 00.0" S/100 degrees 25'' 00.0" W), and Webber Nunatak (74 degrees 47'' 00.0" S/99 degrees 50'' 00.0" W). This work was funded by NERC grants NE/S00663X/1 and NE/S006710/1.
-
A ground-based radar survey consisting of 35 discrete quad-polarization measurement sites over three field seasons was undertaken on Rutford Ice Stream, West Antarctica. Sites A01 to A10 were collected on 20 January 2017, along a profile orientated perpendicular to the ice flow direction. The 10 sites are located between the central ice flowline and the ice-stream margin along a profile of length 8.5 km with the inter-site spacing decreasing toward the ice-stream margin. Sites B01 to B10 were collected on 05 December 2019, along a profile orientated parallel to the central flowline. The sites were surveyed with the first site 4 km upstream of site A01 and the inter-site distance spacing fixed at 4 km. Sites C01 to C11 were collected on 14 December 2018, and located between sites A01 and A02 at 200 m spacing. Sites D01-D04, collected on 25 January 2019, are downstream of A01 and form a diamond shape with 800 m spacing. At each site, polarimetric radar-sounding measurements were made using an autonomous phase-sensitive radio-echo sounder (ApRES), a frequency-modulated continuous-wave radar. The ApRES has a centre frequency of 300 MHz and a bandwidth of 200 MHz, which results in a range resolution of approximately 40 cm in ice. ApRES radar data were collected as part of the BEAMISH Project (NERC AFI award numbers NE/G014159/1 and NE/G013187/1).
-
During the austral summer of 2005/06 a collaborative UK/Italian field campaign collected ~61,000 line km of aerogeophysical data over the previously poorly surveyed Wilkes subglacial basin, Dome C, Transantarctic Mountains, George V Land and Northern Victoria Land using airborne survey systems mounted in a Twin Otter aircraft. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, a LaCoste and Romberg air-sea gravimeter, and an ice-sounding radar system (PASIN). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.
-
An airborne radar survey was flown over the Institute and Moller ice streams in the Weddell Sea sector of West Antarctica in the austral summer of 2010/11 as part of the Institute-Moller Antarctic Funding Initiative (IMAFI) project (grant reference number: NE/G013071/1). This project was a NERC Antarctic Funding Initiative (AFI) collaborative project between the British Antarctic Survey and the Universities of Edinburgh, York, Aberdeen and Exeter with the aim to test the hypothesis that the Institute and Moller ice streams are underlain by weak marine sediments which control the flow of the overlying ice. Operating from two static field camps close to the ice divide between the Institute and Moller ice streams and Patriot Hills, we collected ~25,000 km of airborne radio-echo sounding data across 28 survey lines. Our aircraft was equipped with dual-frequency carrier-phase GPS for navigation, radar altimeter for surface mapping, wing-tip magnetometers, a LaCoste and Romberg air-sea gravimeter, and an ice-sounding radar system (PASIN). We present here the full radar dataset consisting of the deep-sounding chirp and shallow-sounding pulse-acquired data in their processed form, as well as the navigational information of each trace, the surface and bed elevation picks, ice thickness, and calculated absolute surface and bed elevations. This dataset comes primarily in the form of NetCDF and georeferenced SEGY files. To interactively engage with this newly-published dataset, we also created segmented quicklook PDF files of the radar data.
-
This dataset contains the position and depth of four spatially-extensive Internal Reflecting Horizons (or IRHs) traced on the British Antarctic Survey''s PASIN system and NASA Operation IceBridge''s MCoRDS2 system across the Pine Island Glacier catchment. Using the WAIS Divide ice-core chronology and a 1-D steady-state model, we assign ages to our four IRHs: (R1) 2.31-2.92 ka, (R2) 4.72 +/- 0.28 ka, (R3) 6.94 +/- 0.31 ka, and (R4) 16.50 +/- 0.79 ka. This project was funded by the UK Natural Environment Research Council Grant NE/L002558/1
-
This dataset includes ~3,000 line km of radio-echo sounding data along the English Coast of western Palmer Land in the Antarctic Peninsula. Data was acquired by the British Antarctic Survey Polarimetric-radar Airborne Science Instrument (PASIN2) ice sounding radar system in the austral summer of 2016/2017. Radar lines collected at ~3-5 km line spacing transect a number of outlet glacier flows, close to the grounding line, where continental ice begins to float. Data were funded by a BAS National Capability grant.
NERC Data Catalogue Service