EARTH SCIENCE > Cryosphere > Glaciers/Ice Sheets
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Update frequencies
Resolution
-
Gravity, magnetic and radar data were acquired during a joint UK-Argentina (BAS/IAA) project, during the austral summer 1998-1999. 10,771 line km of data were acquired using a BAS Twin Otter, covering an area of 21,000 km2 that comprises the James Ross Island archipelago and the NW corner of the Weddell Sea. Gravity and magnetic data were simultaneously acquired at a constant barometric height of 2000 m, providing a terrain clearance of approximately 100 m over the highest peaks. The main flight lines were flown along an E-W direction with 2000 m spacing over James Ross Island and at 4000 m interval offshore. Tie lines, oriented meridionally, were spaced 10,000 m and extended beyond the magnetic survey to provide a regional context to the survey area as required also for airborne gravity data analysis. Magnetic data were acquired at a frequency of 10 Hz using vapour cesium magnetometers mounted on the aircraft wing tips, and resampled to 1 Hz after compensation for manoeuvre noise. A triaxial fluxgate magnetometer was mounted close to the tail of the aircraft, providing magnetic attitude information used in the data compensation. However, gravity acquisition defines that turbulent conditions are avoided and so manoeuvre noise is generally minimal. Ashtech Z12 duel frequency GPS receivers were used for survey navigation and for post-processing of the GPS data. Magnetic data were de-spiked to remove avionics noise and then smoothed (- 300 m low pass filter), before re-sampling from 10 to 1 Hz. The data were first corrected for diurnal variations using low-pass filtered base station data (30 min low-pass filter). For the internal field we used the Definitive Geomagnetic Reference Field Model 1995. The final data processing step was network levelling and microlevelling (Ferraccioli et al., 1998). We present here the processed line aeromagnetic data collected using scintrex cesium magnetometers mounted on the BAS aerogeophysical equipped Twin Otter. Data are provided as XYZ ASCII line data.
-
Over 20,000 km of new aerogravity data were acquired over Palmer Land during the 2002-2003 Antarctic campaign. Profile lines were oriented E-W with N-S tie lines. Line spacing was 5 km, tie lines were 25 km apart and nominal flight altitude was 2800 m. Differential, carrier phase, kinematic GPS processing methods provided the vertical and horizontal accelerations, which dominate the raw aerogravity signal. Levelled airborne gravity data have mean accuracies of 3 mGal. We present here the processed line aerogravity data collected using Lacoste and Romberg air-sea gravity meter S83. Data are provided as XYZ ASCII line data.
-
This data was collected during two Antarctic field seasons (2013-14, 2014-15) using two Leica GS10 dual-frequency Global Position Systems (dGPS). We installed 53 2m aluminium stakes in the snow surface along lines perpendicular to ice divides on four ice rises in the Ronne Ice Shelf region. In each season we used the dGPS units to measure the position of each pole. During most position measurements we deployed a rover unit for 20 minutes at each stake while a static base station dGPS unit was left in place for 5 or more hours. In the minority of cases the power to the base station unit failed and data from the rover unit is not accompanied by base-station data.
-
This dataset contains a series of point measurements made using a ground-based phase-sensitive radio-echo sounder (pRES) designed by the British Antarctic Survey. The system is configured as a step-frequency radar to sample the frequency response of the ice at 3201 equally-spaced frequency steps between 225 MHz and 385 MHz.
-
Analysis of shallow ice cores collected in the region of subglacial Lake Ellsworth. Three cores drilled to ~20 m depth. Two cores returned to UK for analysis. One core measured for density-depth in the field, then discarded. One of the two cores returned to UK has been sent to Bristol University for major anion/cation analysis; the other core is at the British Antarctic Survey (BAS) and will be analysed for accumulation rate. Density analysis is complete. Chemical analysis is complete. Accumulation analysis is in progress.
-
During the 2001-02 field season a regional survey was flown on a 10 km line spacing grid over the drainage basin of the Rutford Ice stream (West Antarctica), as part of the TORUS (Targeting ice stream onset regions and under-ice systems) project. We present here the bed elevation picks from airborne radar depth sounding collected using the "BAS-built" radar depth sounding system mounted on the BAS aerogeophysical equipped Twin Otter aircraft. Data are provided as XYZ ASCII line data
-
A distributed acoustic sensing (DAS) experiment was undertaken at SkyTrain Ice Rise in the Weddell Sea Sector of West Antarctica. The aim was to evaluate the use of DAS technology using existing infrastructure and for delineating the englacial fabric to improve our understanding of ice sheet history in the region. Three walkaway profiles were acquired at 45 degree intervals using a hammer and plate source. Both direct and reflected P- and S-wave energy, as well as surface wave energy, are observed using a range of source offsets recorded using fibre optic cable. Significant noise results from the cable hanging untethered in the borehole. At greater depth, where drilling fluid is present, signal strength is sufficient to measure seismic interval velocities and attenuation. Fieldwork was part of the BEAMISH Project (NERC AFI award numbers NE/G014159/1 and NE/G013187/1). John Michael Kendall was supported by additional funding from NERC award No. CASS-166. The Skytrain borehole and fibre optic cable are part of the University of Cambridge WACSWAIN Project (EU Horizon 2020 agreement No. 742224).
-
Meteorological data collected on Larsen Ice Shelf including pressure, temperature, wind speed and direction.
-
A high resolution survey was flown opportunistically by BAS at the end of the AGAP aerogeophysical campaign during the 2008-09 Antarctic field season with NSF support from McMurdo. The main purpose was to collect data on the ice shelf for a radar pre-site survey for a major planned international ANDRILL drilling campaign at Coulman High. Due to lack of appropriate funding levels from several countries this ANDRILL drilling project has been postponed (https://www.icdp-online.org/projects/world/antarctica/coulman-high/) but the site remains nevertheless a potentially interesting target for future geoscience studies. The Coulman High project aimed to explore the range of paleo-environments, ecosystems and tectonic events that affected the Ross Sea region as it transitioned from the warm, high-CO2 Greenhouse world typical of the Eocene into the lower-CO2 and highly variable Icehouse conditions of the Oligocene and early Miocene. The aeromagnetic data released here can be used together with more extensive pre-existing international datasets to help study rift-related magmatism, faulting and sedimentary basins in the region.
-
Using the British Antarctic Survey''s DeHavilland Dash-7, approximately 10,000 line-km of data were collected from the Black Coast and adjacent Weddell Sea embayment, which is situated ca. 600 km southeast of the airfield at Rothera Station . Flight lines were spaced at 10-km intervals with perpendicular tie lines spaced at 40 km. Where time and fuel allowed, selected areas were infilled at a 5-km line spacing. The marine part of the survey was flown at around less than 1000 m above sea level.We present here the processed line aeromagnetic data acquired using scintrex cesium magnetometers mounted on the BAS aerogeophysical equiped Dash-7. Data are provided as XYZ ASCII line data.
NERC Data Catalogue Service