Text File (.txt)
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
-
These datasets are for samples collected from Volcan de Colima (Mexico) which is at coordinates: 19°30’46" N 103°37’02" W / 19.512727°N 103.617241°W. This volcano erupts magmas that are crystal-bearing, making those cooled volcanic rocks ideal for experimentation. And so samples were cored from blocks from that volcano and those cores were then returned to high temperatures (up to 1000 C) and then deformed under controlled stresses. These data form the central part of this publication: https://doi.org/10.1016/j.jvolgeores.2024.108198. The deformation experiments were performed at LMU (Munich, Germany). The volcano coordinates from which the samples were collected are given above. The samples were deformed in a high temperature hydraulic press equipped with acoustic emission sensors. This is the ideal device for determining the behaviour of the magmas from Volcan de Colima under the same stresses and temperatures at which they were erupted. The data give key clues as to the modes of flow behaviour of the magma in volcanoes. This work provides generalised insights into magma flow behaviour.
-
These data present volume estimates from images (using the solid of revolution method from the cross-sectional area) of clasts expanding during vesiculation at high temperature. The data also contain clast interior volume estimates without the dense rind around the clasts (formed by diffusive outgassing, and estimated through time),l which is is calculated in Matlab. The methods are provided in more detail in Weaver et al., 2022. These data contain sample measurements (surface area), total clast volume calculation (using solid of revolution from clast cross-sectional area), degassed skin area (using imerode in Matlab and the diffusion data provided in the table) and skin volume (solid of revolution from skin surface area), and core surface area and volume from the difference between total clast and skin volumes/skin area. All data are presented in Weaver et al., 2022 (https://doi.org/10.1016/j.jvolgeores.2022.107550), where further details of the methods can also be found. All data were collected and analysed at the University of Liverpool using clasts from Hrafntinnuhryggur, Iceland. The geographical location of the samples collected is of no relevance to this study, as the samples were selected for their physical attributes. All data were collected and analysed throughout 2021 and 2022. Volcanic glass cylinders of different starting sizes were placed in a furnace at high temperature (1006 oC). Two furnaces were used, either a tube furnace with open ends to allow imaging of the sample silhouette, or a box furnace with a sapphire window to allow imaging of the sample as vesiculation takes place. Cross-sectional areas are then converted to volumes using solid of revolution as vesiculation is isotropic. Diffusion modelling is used to quantify the development of the fully degassed rind around the sample and used to estimate the rind volume through imerode in Matlab and solid of revolution. Total clast, core and rind volumes are thus able to be retrieved. As magmas approach the surface of the Earth, volatile saturation in the melt decreases, which results in volatile exsolution in vesicles (vesiculation) and outgassing. The interplay between the amount of vesicles trapped in the melt and those that diffusively outgas from the surface is dependent on the volume to surface area ratio. Understanding the kinetics of outgassing and vesiculation is key to understand pressure build-up in magmatic conduits and effusive-explosive transitions at volcanoes.
-
These data contain 1) load string compliance mechanical data used to retrieve the absolute sample deformation (Compliance folder); 2) Acoustic emissions data (RawData_AEs folder); 3) Compaction data of the granular packs (RawData_Press folder). These data we used for the publication by Zorn et al., 2024 (https://doi.org/10.30909/vol.07.02.765783). A PDF document detailing further information of the contents of each folder entitled "Zorn_Compaction_Data_Overview" is provided. All data were collected and analysed at LMU Munich on samples from the Eifel Volcanic Field (Germany) and from the Krafla caldera (Iceland). The geographical location of the samples collected is of no relevance to this study, as the samples were selected for their physical attributes. All data were collected and analysed in 2023 and 2024. Loose fragments of volcanic rock from the Eifel Volcanic Field or Krafla caldera were placed in a metal cup and progressively loaded axially to a target load before either 1) removing the load (called "dynamic stressing tests"); or 2) holding the load for 6h or 5 days (called "dynamic followed by static tests"). All experiments were conducted using an Instron uniaxial press, and all displacement data are corrected for the deformation of the loading column (compliance). During each experiment, acoustic emissions sensors attached to the side of the cup to monitor cracking events These data were collected to understand the compaction behaviour of volcanic edifices that consist of interbedded layers of variably loose/coherent materials.
-
These are data pertaining to Wadsworth et al. (2022) which are published here: https://doi.org/10.1016/j.jvolgeores.2022.107672. How: Samples were set in epoxy and ground to the point where half of the glass chips collected were ground away. Then the sample was turned around and the other half of the particles were ground away until a thin slice of the chips remained at about 0.05 mm thick. At this point, the thin slices of volcanic chips were measured using Fourier Transform Infrared How: Spectroscopy (FTIR) at JAMSEC (Japan) by Iona McIntosh in collaboration with coauthors and Fabian Wadsworth. The data are the primary data in this manuscript. These data were collected to investigate how much water is remnant in particles that are known to have formed by the competition between degassing of H2O and sintering in volcanoes. That competition has implications for the development and destruction of permeability, which is at the core of this project.
NERC Data Catalogue Service