Spatial and temporal datasets for shear-thinning and Newtonian small-scale analogue dyke experiments
These data consist of spatial and temporal datasets for 7 different small-scale laboratory experiments of fluid-driven fractures, described in the paper The hidden internal flow dynamics of shear-thinning magma in dikes (Kavanagh et al., 2025, accepted in AGU Advances, March 2025). These experiments, conducted at the University of Liverpool, are analogue models of magma transport via flux-driven dykes. The 7 experiments are named HEC1, HEC2, HEC3, XG1, XG2, W1, W2. Experiments HEC and XG involved the injection of a shear-thinning fluid (a hydroxyethyl cellulose polymer (HEC) and xanthan gum solution (XG)), whilst experiments W1 and W2 involved Newtonian water injections. Experiments HEC1, HEC3, XG1 and W1 were ‘seeded fluid experiments’ or ‘PIV experiments’, whilst experiments HEC2, XG2 and W2 were ‘seeded gelatine experiments’ or ‘dyke-thickness experiments’. We provide the raw experimental data along with the Matlab scripts used to process and plot the data. Further information is provided in the containing README documents.
Simple
- Date (Creation)
- 2025-03-13
Originator
University of Lancaster
-
Thomas Jones
Lancaster Environment Centre
,
Lancaster
,
LA1 4YQ
,
- Maintenance and update frequency
- notApplicable notApplicable
- GEMET - INSPIRE themes, version 1.0
- BGS Thesaurus of Geosciences
-
- Rheology
- Volcanic zones
- NGDC Deposited Data
- Magma
- Viscosity
- Dykes
- dataCentre
- Keywords
-
- NERC_DDC
- Access constraints
- otherRestrictions Other restrictions
- Other constraints
- licenceOGL
- Use constraints
- otherRestrictions Other restrictions
- Other constraints
- The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.
- Other constraints
- Available under the Open Government Licence subject to the following acknowledgement accompanying the reproduced NERC materials "Contains NERC materials ©NERC [year]"
- Metadata language
- EnglishEnglish
- Topic category
-
- Geoscientific information
- Begin date
- 2018-08-01
- End date
- 2020-09-30
Reference System Information
No information provided.
- Distribution format
-
-
.txt
()
-
MS Word
()
-
Matlab scripts
()
-
.txt
()
- OnLine resource
- Digital Object Identifier (DOI)
- OnLine resource
- Data
- Hierarchy level
- nonGeographicDataset Non geographic dataset
- Other
- non geographic dataset
Conformance result
- Date (Publication)
- 2011
- Explanation
- See the referenced specification
- Pass
- No
Conformance result
- Date (Publication)
- 2010-12-08
- Explanation
- See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:323:0011:0102:EN:PDF
- Pass
- No
- Statement
- Experimental dykes were created by injecting different fluids into a tank filled with transparent gelatine. Constant fluid injection resulted in the formation of a thin penny-shaped fracture that grew until it erupted at the surface. The plane of fracture growth was illuminated with a thin laser sheet to visualise fluorescent seeder particles that were suspended in either the fluid or the gelatine. Fracture and flow evolution were recorded with a camera placed perpendicular to the laser sheet. For the seeded fluid experiments, a particle-tracking technique called Particle Image Velocimetry (PIV) was applied to get 2D fluid velocity profiles across the fracture width at regular time intervals. The seeded gelatine experiments were recorded in the alternative plane, perpendicular to the plane of the seeded fluid experiments, to visualise the evolution of the fracture thickness.
- File identifier
- 304ba90b-66ca-d75f-e063-3050940a3500 XML
- Metadata language
- EnglishEnglish
- Hierarchy level
- nonGeographicDataset Non geographic dataset
- Hierarchy level name
- non geographic dataset
- Date stamp
- 2025-11-13
- Metadata standard name
- UK GEMINI
- Metadata standard version
- 2.3
Point of contact
British Geological Survey
Environmental Science Centre,Keyworth
,
NOTTINGHAM
,
NOTTINGHAMSHIRE
,
NG12 5GG
,
United Kingdom
+44 115 936 3100
- Dataset URI
- http://data.bgs.ac.uk/id/dataHolding/13608394
NERC Data Catalogue Service