University of Oxford, Department of Earth Sciences
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
-
The data set comprises trace metal and isotope data from the GEOTRACES programme. The data set incorporates the core GEOTRACES parameters for example, Iron (Fe), Aluminum (Al), Zinc (Zn), Manganese (Mn), Cadmium (Cd), Copper (Cu), delta 15 Nitrogen, delta 13 Carbon, Thorium (Th) isotopes, Protactinium(Pa) isotopes, Lead (Pb) isotopes, Neodymium (Nd) isotopes and aerosols, These data are also supported by ancillary measurements. GEOTRACES is global in scope and consists of ocean sections complemented by regional process studies. The ocean sections are designed to cross regions that provide the most information about sources, sinks and internal cycling of trace elements and isotopes (TEIs). The programme started in 2006, with the first International Polar Year - GEOTRACES cruise, and aims to study all major ocean basins over the next decade. Advances in clean sampling protocols and analytical techniques provide an unprecedented capability for measurement of a wide range of TEIs. All measurements collected for GEOTRACES will use ultra clean techniques as many of the countries involved have built specialist winches, wires and conductivity-temperature-depth (CTD) units specifically for this programme. SAFe standards (standards developed following the Sampling and Analysis of Fe (SAFe) cruise) and GEOTRACES inter-calibration protocols provide quality control.The GEOTRACES programme builds on the data collected during the Geochemical Ocean Section Study (GEOSECS) in the 1970s. The potential afforded by advances in sampling protocol and analytical techniques had not been realized since then, largely because of a lack of coordinated research. The GEOTRACES programme includes scientists from approximately 30 nations, although the key countries are the UK, Germany, France, Spain, Sweden, Netherlands, USA, Canada, New Zealand, Australia, Japan, India and China.
-
The COMICS (Controls over Ocean Mesopelagic Interior Carbon Storage) project consists of observations, at sea, of particle flux and stable isotopes. It applies organic geochemical and molecular biological techniques to samples collected using nets and traps. The study areas are the tropical Atlantic and Southern Oceans. The results will be combined with models to quantify the flow of carbon in the ocean’s ‘twilight’ zone in order to accurately model global climate change. This ‘twilight’ zone is the part of the ocean between 100m and 1000m below the sea surface, where only a small amount of light from the sun can still penetrate. By investigating carbon dynamics in the ocean interior, COMICS will help to improve predictions of future global climate change. The COMICS project is led by the National Oceanography Centre and is a collaboration between the British Antarctic Survey and the universities of Queen Mary London, Liverpool, Oxford and Southampton. The project received funding from the Natural Environmental Research Council and runs between 2017 and 2022.
-
The Shelf Sea Biogeochemistry (SSB) data set comprises hydrographic data, including measurements of temperature, salinity and currents, complemented by bathymetric and meteorological data. The study area is located in the Celtic Sea, shelf seas and shelf-edges around the United Kingdom and Republic of Ireland. The data were collected by a combination of research cruises that spanned from March 2014 to September 2015. Shipboard data collection involved the deployment of conductivity-temperature-depth (CTD) packages in the study area. Continuous measurements of current velocities (using vessel mounted ADCPs, VMADCPs), bathymetry and surface ocean and meteorological properties were collected throughout each cruise. Moorings were deployed in the Celtic Sea in early 2014 and provided approximately two years worth of hydrographic time series data. The SSB programme aims to increase the understanding of the cycling of nutrients and carbon and the controls on primary and secondary production, and their role in wider biogeochemical cycles, which in turn will significantly improve predictive marine biogeochemical and ecosystem models over a range of scales. SSB brings together UK researchers from Bangor University, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Meteorological Office, National Oceanography Centre (NOC), Plymouth Marine Laboratory (PML), Scottish Association for Marine Science (SAMS), University of Aberdeen, University of East Anglia (UEA), University of Edinburgh, University of Liverpool, University of Oxford, University of Portsmouth and University of Southampton. It also has UK and Irish partners, as Agri-Food and Biosciences Institute (AFBI), Marine Institute and Marine Scotland Science. The programme was divided into five work packages, having Jonathan Sharples as the Principal Investigator for work package 1 (CANDYFLOSS), Martin Solan as Principal Investigator for work package 2 (Biogeochemistry, macronutrient and carbon cycling in the benthic layer), Peter J. Statham as Principal Investigator for work package 3 (Supply of iron from shelf sediments to the ocean), Icarus Allen as Principal Investigator for work package 4 (Integrative Modelling for Shelf Seas Biogeochemistry) and Keith Weston as Principal Investigator for work package 5 (Blue Carbon – How much carbon is stored in UK shelf seas, what influences storage and could it be used in carbon trading?). All data will be managed by the British Oceanographic Data Centre (BODC).
-
The cross-disciplinary themes will result in a diverse data catalogue. The ship collected data will be in the form of sea surface meteorology (2-D wind speed and direction, total irradiance, Photosynthetically Active Radiation/PAR, air temperature, atmospheric pressure, humidity); atmospheric carbon dioxide (pCO2); biological, chemical and physical properties and processes in the marine photic zone (carbonate chemistry - pCO2, total alkalinity, pH, DIC; dissolved gases - oxygen; nutrient concentrations, ammonium regeneration, nitrification, nitrogen fixation, zooplankon ecology, chlorophyll concentration, photosynthetic pigment composition, bacterial production, phytoplankton and bacterial speciation, concentrations of biogenic trace compounds such as dimethyl sulphide/DMS and dimthylsulphoniopropionate/DMSP, salinity, temperature, zooplankon ecology) and bioassays of these same parameters under different future IPCC CO2 and temperature scenarios. The long-term (18 month) laboratory based mesocosm experiments will include data on individual organism response (growth, immune response, reproductive fitness) under different future IPCC CO2 and temperature scenarios in rocky intertidal, soft sediment and calcareous biogenic habitats, as well as the effects on commercially important species of fish and shellfish. The analysis of sediment cores will provide greater resolution of the paleo record during the Paleocene-Eocene Thermal Maximum (PETM). Data will be used to aid the parameterisation of coastal and continental shelf seas (Northern Europe and the Arctic) model runs as well as larger scale global models. The shipboard fieldwork will take place around the UK, in the Arctic Ocean and the Southern Ocean. The mesocosms will look at temperate marine species common to UK shelf seas. Sediment cores have been collected from Tanzania. The models will look from the coastal seas of Northern Europe to the whole globe. Data to be generated will include data collected at sea, short-term (2-3 day) ship-board bioassays, from long-term (18 month) laboratory based mesocosm experiments and reconstructed paleo records from sediment cores. The 5 year UK Ocean Acidification Research Programme is the UK’s response to growing concerns over ocean acidification. Aims: 1 - to reduce uncertainties in predictions of carbonate chemistry changes and their effects on marine biogeochemistry, ecosystems and other components of the Earth System; 2 - to understand the responses to ocean acidification, and other climate change related stressors, by marine organisms, biodiversity and ecosystems and to improve understanding of their resistance or susceptibility to acidification; 3 - to provide data and effective advice to policy makers and managers of marine bioresources on the potential size and timescale of risks, to allow for development of appropriate mitigation and adaptation strategies. The study unites over 100 marine scientists from 27 institutions across the UK. It is jointly funded by Department for Environment, Food and Rural Affairs (Defra), the Natural Environment Research Council (NERC) and Department of Energy and Climate Change (DECC).