Contact for the resource

National Oceanography Centre (Southampton)

63 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 10 / 63
  • Categories  

    The CreamT project converted the prototype WireWall wave overtopping field measurement system into a ruggedised monitoring system between August 2020 and August 2023. The system was deployed for up to a year in two high-energy coastal environments along the Southwest coast, UK (Dawlish and Penzance). The system was designed to have a 3-month maintenance interval and was programmed to measure overtopping condition ±3hrs either side of predicted high tide. The wave-by-wave overtopping data were telemetered to the British Oceanographic Data Centre (BODC) every 10 minutes. At the time of the project, the coastal structures at these sites comprised a vertical sea wall with small return lip or curve at the top. Both sea walls were fronted by a beach. During the project period the Dawlish beach levels exposed a concreate toe at the base of the wall. In Penzance, the beach covered the sea wall toe and was higher in the southwest monitoring location. The system was designed at the National Oceanography Centre (NOC) and had previously been validated in HR Wallingford’s flume facility and field tested with Sefton Council (https://www.channelcoast.org/northwest/). During CreamT, three different system configurations were deployed: full WireWall systems each with an array of six capacitance sensors; smaller WireWand systems with two capacitance sensors mounted on a single pole to detect overtopping at hazard hotspots; and a WaveWell using a single sensor on the face of the sea wall. Six datasets are available from the CreamT project. These contain delayed mode data from: 1) a WireWall deployed at the crest of the sea wall in Dawlish; 2) a WireWand deployed at the wall just seaward of the railway line in Dawlish; 3) a WireWand deployed at the fence just inland of the railway line in Dawlish; 4) a WaveWell deployed on the face of the sea wall in Dawlish; 5) a WireWall deployed at the crest of the sea wall in Penzance near Queen’s Hotel, and; 6) a WireWall deployed at the crest of the sea wall in Penzance near the Lidal store at Wherrytown. The datasets in Dawlish provide information about the inland distribution of overtopping, and the two datasets in Penzance provide information about the alongshore variability in overtopping hazard. These data can be used alongside the regional monitoring data available from the Southwest Regional Monitoring Programme to investigate the drivers of wave overtopping. All these data can be visualised in a hazard dashboard developed by the BODC and hosted on JASMIN, https://coastalhazards.app.noc.ac.uk/. This project was delivered by the National Oceanography Centre in collaboration with BODC and the University of Plymouth under NERC Grant References NE/V002538/1 and NE/V002589/1. Project partners were Network Rail, Southwest Regional Monitoring Programme, Environment Agency and Channel Coastal Observatory.

  • Categories  

    Data from the MarineE-tech project were collected via three platforms; ship, Autonomous Underwater Vehicle (AUV) and Remotely Operated Vehicle (ROV). Shipboard data includes multibeam bathymetry, sub-bottom profiler, gravimeter and moorings data, plus CTD casts and gravity core samples. AUV data consists of high-resolution multibeam bathymetry, sub-bottom profiler, CTD, LADCP, turbidity and magnetics data, plus camera stills. ROV data consists of video and camera stills plus grab samples and drill core samples. Also available are numerical model results and input files from the TELEMAC-3D numerical model developed by HR Wallingford and used to predict currents during plume dispersion experiments. Data were collected from the Tropic Seamount in the Northeast Atlantic Ocean between October and December 2016. A second cruise, DY094, collected data from the Rio Grande Rise and Sao Paulo Ridge region in the Southwest Atlantic Ocean from late 2017 to early 2018. The project deployed robotic underwater technology including the use of the 6500m depth-rated ISIS remotely operated vehicle to sample over 100 locations of FeMn crusts and the 6000m rated AUV Autosub6000 to image the lateral extent and thickness of crusts across the seamounts. Benthic landers and moored instruments such as ADCPs (for disturbance plume monitoring) were also deployed. The JC142 oceanographic data provided verification for the TELEMAC-3D numerical model. This research will improve understanding of the processes controlling the concentration of E-tech deposits and their composition at a local scale, and for the potential impacts of mineral recovery to be identified. MarineE-tech is jointly funded by the Natural Environment Research Council (NERC), Security of Supply of Mineral Resources (SoS Minerals), Engineering and Physical Sciences Research Programme (EPSRC), and the Sao Paulo Research Foundation (FAPESP). Other parties involved include the British Geological Survey (BGS), University of Sao Paulo, University of Bath, University of Leicester, HR Wallingford, Marine Ecological Surveys Ltd (MESL), Secretariat of the Pacific Community (SPC) and Soil Machine Dynamics Ltd (SMD).

  • Categories  

    This dataset provides modelled storm surge and total water levels along the South China Sea region (coastline of China, Vietnam, Cambodia and Thailand) for the period 1980-2050. Three return period scenarios are considered: 10% AEP (Annual Exceedance Probability) = 1:10 year return period; 1% AEP = 1:100 year return period; 0.1% AEP = 1:1000 year return period. Projections utilise Representative Concentration Pathway (RCP) 8.5 – the greenhouse gas concentration trajectory adopted by the Intergovernmental Panel on Climate Change (IPCC). The dataset was produced by forcing a hydrodynamic model underpinned by a new synthetic database representing 10,000 years of past, present and future tropical cyclone activity. The aim of this exercise being to estimate the risks posed by extreme sea levels, especially in tropical regions where cyclones can generate large storm surges and observations are too limited in time and space to deliver reliable analyses. The dataset was produced by Principal Investigators Dr Ivan D Haigh and Dr Melissa Wood (School of Ocean and Earth Science, University of Southampton, UK) in collaboration with partners from the School of Geography and Environmental Science (University of Southampton, UK), Tyndall Centre for Climate Change Research (University of East Anglia, UK), Southern Institute of Water Resource Research (Vietnam) and the Institute for Environmental Studies (Netherlands). Funding was secured through the UK’s Natural Environment Research Council (NERC) Grant ‘CompFlood’ (grant number NE/S003150/1).

  • Categories  

    Multibeam bathymetry data were collected in the Clarion-Clipperton Zone (CCZ), Northeast Pacific Ocean, using a hull-mounted Kongsberg EM122 multibeam echosounder during RRS James Cook Cruise JC241 from 06/02/2023 to 25/03/2023, and JC257 from 08/02/2024 to 19/03/2024. Data acquisition began upon exiting the Costa Rican Econoic Exclusion Zone (EEZ), suspended within the Clipperton Island EEZ, and resumed upon exiting the Clipperton Island EEZ. Data were then acquired throughout the CCZ. This suspension was repeated on the return journey. The data were recorded using Kongsberg’s Seafloor Information System (SIS) in .all format, and CTD and model-derived sound velocity profiles were subsequently applied. The data were manually cleaned using swath and subset editors in CARIS HIPS and SIPS software version 10.4. A zero tide file was also applied. The data were collected to obtain a better insight in the biodiversity patterns and benthic habitat distributions within the CCZ, by scientists from the National Oceanography Centre, Southampton, UK as part of the NERC-funded Seabed Mining And Resilience To EXperimental impact (SMARTEX) project (NE/T003537/1).

  • Categories  

    The dataset comprises 12 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from across the North Atlantic Ocean area specifically the Mid-Atlantic Ridge - Eastern Boundary. The data were collected during October and November of 2007. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the National Oceanography Centre, Southampton as part of the Rapid Climate Change Programme.

  • Categories  

    The dataset comprises 4 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from across the North East Atlantic Ocean (limit 40W) area specifically at the Tropic Seamount, west of Western Sahara, during November and December of 2006. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the National Oceanography Centre, Southampton as part of the Rapid Climate Change Programme.

  • Categories  

    The dataset comprises 50 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from across the North East Atlantic Ocean (limit 40W) area specifically around the Mid-Atlantic Ridge, during July and August 2007. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the National Oceanography Centre, Southampton as part of the ECOsystems of the Mid Atlantic Ridge (ECOMAR) project.

  • Categories  

    The dataset comprises 27 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, and 71 Moored CTDs from across the North Atlantic Ocean area specifically covering the Eastern Boundary and Mid-Atlantic Ridge areas during October and November of 2008. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the National Oceanography Centre, Southampton as part of the RAPID-WATCH (Rapid Climate Change - Will the Atlantic Thermohaline Circulation Halt?) programme.

  • Categories  

    The dataset comprises chlorophyll-a concentrations from water samples taken during RRS James Clark Ross cruise JR304, from 15/11/2014 - 17/12/2014. The cruise sailed from Punta Arenas, Chile, returning to Stanley, Falkland Islands. Samples were taken during transit to Signy Island (South Orkneys), and then up through the Scotia Sea to BAS survey sites P2 and P3 as well as near South Georgia and in the Western Core Box survey area to the north of the island of South Georgia. 112 samples were collected from the ship’s uncontaminated underway supply, with an intake at approximately 6 m depth, every two hours during transit periods. 103 samples were collected, using a rosette sampler, from the upper 1000m during CTD (conductivity, temperature and depth probe) deployments. Each 300ml sample was filtered through a 0.8μm pore size, 25mm diameter, MPF300 filter, rinsed with milliQ water, placed in an eppendorf tube and stored at -20°C for later analysis. Samples were extracted in 90 % acetone for 22-24 hours at 4°C and measured on a Trilogy Turner Designs 7200 lab fluorometer calibrated with a pure chlorophyll-a standard (Sigma, UK) and set up following the method of Welschmeyer (1994). Data have not been adjusted for blanks. The data set was from the annual Western Core Box Cruise run by British Antarctic Survey (BAS). Data were collected to support the PhD of Anna Belcher and provide seasonal context for the cruise in terms of the primary production in the surface ocean. Chlorophyll samples were taken by Jenny Thomas (BAS), Gabi Stowasser (BAS), Sophie Fielding(BAS), Vicky Peck (BAS), Jess Gardner (University of East Anglia and BAS), Cecilia Liszka (BAS), Manon Duret (National Oceanography Centre, NOC), Anna Belcher (NOC), Anna Mikis (Cardiff University) , Marianne Wootton (Sir Alistair Hardy Foundation for Ocean Science), Sebastien Floter (GEOMAR Kiel). Chlorophyll samples were analysed aboard the R.R.S. James Clark Ross by Manon Duret and Anna Belcher from NOC.

  • Categories  

    The dataset comprises 10 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, and 40 moored CTDs from across the North Atlantic Ocean area specifically the Subtropical North Atlantic, during May and June 2006. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the National Oceanography Centre, Southampton as part of the Rapid Climate Change Programme.