nonCciKeyword

unknown

231 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Update frequencies

From 1 - 10 / 231
  • The data set comprises 2193 profiles of turbidity from an area of the Severn Estuary (UK) between the Shoots and Bridgwater Bay between 1974 and 1978. The data were collected as analogue records of continuous vertical profiles on a time series cross-section basis, where possible, over 13.5 hours from a drifting ship. All measurements were collected between 0 m and 39 m depth. The data coverage is derived from 172 stations along 17 survey lines, the density of coverage varying between 1 and 99 records per station. Each analogue record was digitised as approximately 200 pairs of XY coordinates. The X ordinates were then converted to depth (in metres) using a depth calibration and the Y ordinates to parts per million (PPM) of sediment using siltmeter calibration data. The Fluid Mud data bank was designed by the (former) Institute of Oceanographic Sciences (IOS) Taunton, UK, and the data were originally stored at IOS on a PDP 11 computer. They were then moved to an Oracle RDBMS at the British Oceanographic Data Centre (BODC) and stored as the Bristol Channel Suspended Sediments Data Bank.

  • The dataset combines fluorescent time-lapse sediment profile imaging (f-SPI) and diffusion gradient thin gels (DGT) to examine, in situ, the link between an important benthic ecosystem process (bioturbation) and ecosystem functioning (trace metal cycling) in Loch Creran, Scotland. The dimensions of the fg-SPI faceplate were 15x21.5cm (=322.50cm2), but after subtraction of the area occupied by the two DGT gels (=74cm2) the field of view reduces to 9x21.5cm (=248.5cm2). The camera (Nikcon D100, 2000 x 3000 pixels = 6 megapixels effective resolution = 75x75um per pixel) was set to an exposure of 1/60 f=2.0 and film speed equivalent to ISO 400. For each time-lapse sequence images were taken every 5 minutes for a period of 96h (n=1152 images per deployment). Three time-lapse movies are presented here to accompany Teal et. al. 2012 Biogeosciences. Data produced by Dr Lorna Teal (Institute for Marine Resources and Ecosystem Studies, IJmuiden), Dr Ruth Parker (Centre for Environment, Fisheries and Aquaculture Science), and Dr Martin Solan (National Oceanography Centre, Southampton).

  • The dataset comprises chlorophyll-a concentrations from water samples taken during RRS James Clark Ross cruise JR304, from 15/11/2014 - 17/12/2014. The cruise sailed from Punta Arenas, Chile, returning to Stanley, Falkland Islands. Samples were taken during transit to Signy Island (South Orkneys), and then up through the Scotia Sea to BAS survey sites P2 and P3 as well as near South Georgia and in the Western Core Box survey area to the north of the island of South Georgia. 112 samples were collected from the ship’s uncontaminated underway supply, with an intake at approximately 6 m depth, every two hours during transit periods. 103 samples were collected, using a rosette sampler, from the upper 1000m during CTD (conductivity, temperature and depth probe) deployments. Each 300ml sample was filtered through a 0.8µm pore size, 25mm diameter, MPF300 filter, rinsed with milliQ water, placed in an eppendorf tube and stored at -20°C for later analysis. Samples were extracted in 90 % acetone for 22-24 hours at 4°C and measured on a Trilogy Turner Designs 7200 lab fluorometer calibrated with a pure chlorophyll-a standard (Sigma, UK) and set up following the method of Welschmeyer (1994). Data have not been adjusted for blanks. The data set was from the annual Western Core Box Cruise run by British Antarctic Survey (BAS). Data were collected to support the PhD of Anna Belcher and provide seasonal context for the cruise in terms of the primary production in the surface ocean. Chlorophyll samples were taken by Jenny Thomas (BAS), Gabi Stowasser (BAS), Sophie Fielding(BAS), Vicky Peck (BAS), Jess Gardner (University of East Anglia and BAS), Cecilia Liszka (BAS), Manon Duret (National Oceanography Centre, NOC), Anna Belcher (NOC), Anna Mikis (Cardiff University) , Marianne Wootton (Sir Alistair Hardy Foundation for Ocean Science), Sebastien Floter (GEOMAR Kiel). Chlorophyll samples were analysed aboard the R.R.S. James Clark Ross by Manon Duret and Anna Belcher from NOC.

  • Historical sea level data for the Thames region. These data were originally screened as part of an Environment Agency project on extreme sea level in the Thames estuary. Coryton: 1966-1970, 1973-1974 North Woolwich: 1950, 1955-1963, 1965-1967, 1969-1970, 1973-1974 Southend: 1981-1983 Tilbury: 1931-1945, 1960-1961, 1967, 1970, 1984 Tower Pier: 1928-1942, 1944-1945, 1947-1951, 1954-1955, 1958, 1960-1966, 1973

  • The data set comprises time series of sea level data from coastal tide gauges. The data holdings include over 1000 site years of data from about 200 sites comprising about 10 million records. About 75 per cent of the data are from some 100 sites around the British Isles - the remaining data are from coastal sites and islands scattered across the globe. Data are primarily hourly values. Recording periods vary from one month at some sites to over several years.There are three short series from around the Irish coast which were collected in 1842.

  • This dataset consists of eastward and northward current components at 32 depth levels. The dataset is a gridded dataset, with grid resolution of 1.85 km. It covers the entire Irish Sea area, with a precise range from -2.7 degrees longitude to -7 degrees longitude and from 51 degrees latitude to 56 degrees latitude. The data are daily averages and cover the period from 01 January 1996 to 01 January 2007. The dataset was generated by the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled with the Wave Modelling model (POLCOMS-WAM) as part of the Natural Environment Research Council (NERC) CoFEE project which ran from April 2007 to September 2010. The eastward and northward current components were used as input conditions into a coastal processes and sediment transport model which looked at the response of the north Liverpool coastline to extreme flooding events. The dataset was generated by the Proudman Oceanographic Laboratory (since April 2010, part of the UK National Oceanography Centre). The dataset consists of 132 data files in Climate and Forecast (CF) compliant NetCDF format.

  • Macrofauna and polychaete species abundance data were obtained from replicate megacore samples collected from inside the Whittard Canyon (N.E. Atlantic) and the adjacent slope to the west of the canyon during cruise JC036 in June and July 2009. Four sites were sampled, three in the Whittard Canyon branches (Western, Central and Eastern) and one site on the slope to the west of the canyon. Five deployments were conducted in the Western branch, six in the Central and Eastern branches and five at the slope site. One extra deployment was made in the Central and Eastern branches to compensate for the failure to recover sufficient cores. All sites were located at 3500 m depth. Samples were collected using a Megacorer fitted with eight large (100 mm internal diameter) core tubes. Core slices from the same sediment layer from one deployment were pooled to make one replicate sample. The number of cores pooled per deployment ranged from 3 to 7 and the area of seabed sampled varied accordingly. The top three sediment horizons (i.e. 0–1, 1–3 and 3–5 cm), were analysed in toto. Macrofauna were identified to higher taxa levels, and polychaetes to species level and counts of species/taxa recorded for each site. AphiaIDs have been assigned to the samples - where identification was only possible to genus or family level, the aphiaIDs for genus and family have been supplied. The supplied aphaIDs are those that were acceptable at the time of the analysis and not their more recent superseding terms. This cruise was part of the HERMIONE project and the data formed the basis of L. Gunton's PhD thesis 'Deep-Sea Macrofaunal Biodiversity of the Whittard Canyon (NE Atlantic)'.

  • GreenSeas was an EU FP7 programme funded to advance the quantitative knowledge of how planktonic marine ecosystems, including phytoplankton, bacterioplankton and zooplankton, will respond to environmental and climate changes. To achieve this GreenSeas employed a combination of observation data, numerical simulations and a cross-disciplinary synthesis to develop a high quality, harmonized and standardized plankton and plankton ecology long time-series, data inventory and information service. This contribution to the programme developed a number of indices to characterize quantitatively the seasonality of phytoplankton (Platt and Sathyendranath, 2008, Racault et al., 2014a). Specifically, indices that relate to the study of timing of periodic biological events as influenced by the environment are referred to as phytoplankton phenology. These indices include: timings of initiation, peak, and termination as well as the duration of the phytoplankton growing period. Changes in phytoplankton phenology (triggered by variations in climate) can profoundly alter: (1) the efficiency of the biological pump, with inevitable impact of the global carbon cycle; and (2) the interactions across trophic levels, which can engender trophic mismatch with major impacts on the survival of commercially important fish and crustacean larvae. Phenology indices were estimated using the R2010.0 reprocessing of Level 3 Mapped chlorophyll-a concentration from the Sea-viewing Wide Field-of-view (SeaWiFS) sensor. The chlorophyll-a data were retrieved from NASA Ocean Color Web http://oceancolor.gsfc.nasa.gov for the period 1997-2008 at 9 km spatial resolution and 8-day temporal resolution. Linear interpolation was applied to map the chlorophyll-a concentration onto a 1degreex1degree fixed grid. The phenology indices were estimated following the method described in Racault et al. (2012). Missing chlorophyll-a data were reduced from the time-series prior to estimating the timing of ecological events. Missing values were filled by interpolating spatially adjacent values (average of 3 × 3 pixels on the 9km grid), when these were available. Any remaining missing values were filled by interpolating temporally adjacent values (average of previous and following 8-day composites), when these were available. Otherwise the value was not filled. A 3-week running mean was applied to remove small peaks in chlorophyll-a. The timings of initiation and end of the phytoplankton growing period were detected as the weeks when the chlorophyll concentration in a particular year rose above the long-term median value plus 5% and later fell below this same threshold (Racault et al., 2012). The duration of the growing season is defined as the number of weeks between initiation and end.

  • This dataset consists of data from one station (Batiki01) that is are part of a network of temperature sensors on the coastal domain of about twenty territories ReefTEMPS (https://journals.openedition.org/netcom/1294) coordinated by the Grand Observatoire de l'environment et de la biodiversite terrestre et marine du Pacifique Sud (GOPS). The dataset consists of temperature data from a temperature logger attached to a coral head recording temperature every 30 minutes at around 10 metres depth with QC being applied following collection of the logger. The data were collected in the coastal waters of Batiki Island, Fiji (latitude=-17.777467, longitude=179.179867, 2012 to 2015).

  • This dataset consists of depth-averaged eastward and northward current components. Also present is the sea surface height above sea level. The dataset is a gridded dataset, with grid resolution of 1.85 km. It covers the entire Irish Sea area, with a precise range from -2.7 degrees longitude to -7 degrees longitude and from 51 degrees latitude to 56 degrees latitude. The data are 30 minute averages and cover the period from 01 January 1996 to 01 January 2007. The dataset was generated by the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled with the Wave Modelling model (POLCOMS-WAM) as part of the Natural Environment Research Council (NERC) CoFEE project which ran from April 2007 to September 2010. The depth-averaged eastward and northward current components and sea surface height were used as input conditions into a coastal processes and sediment transport model which looked at the response of the north Liverpool coastline to extreme flooding events. The dataset was generated by the Proudman Oceanographic Laboratory (since April 2010, part of the UK National Oceanography Centre). The dataset consists of 264 data files in Climate and Forecast (CF) compliant NetCDF format.