nonCciKeyword

Uranium

17 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Scale

Resolution

GEMET keywords

From 1 - 10 / 17
  • Soil depth core collected from the Needle’s Eye site in Dumfries, Scotland. Clear plastic depth core was lowered into a bog within the site, excised, and capped at the top and bottom. Core was sliced at 1 cm intervals at the University of Manchester in an anaerobic bag. A total of 41 samples were generated. Soil samples were returned to Newcastle University.

  • Two sediment depth cores were collected from the floor of Loch Etive, near Oban, Scotland. Slicing was performed in an anaerobic bag. Samples were taken at 0.5 cm increment between 0 - 2 cm, 1 cm increments between 2 - 10 cm, and at either 2 or 5 cm increments thereafter. Samples were transferred to Newcastle University for DNA extraction. A total of 21 samples were extracted for core 1, and 23 samples extracted for core 2.

  • Two sediment depth cores were collected from a mud sediment patch at the sea floor of the Irish Sea. Cores were collected by the University of Manchester. Cores were sliced at 1 cm intervals from 0 - 10 cm, and at 2 cm intervals thereafter. Slicing was performed in an anaerobic bag. Samples were transferred to Newcastle University for DNA extraction. A total of 21 samples were extracted for core 1, and 23 samples extracted for core 2.

  • Soil depth core collected from the Needle’s Eye site in Dumfries, Scotland. Clear plastic depth core was lowered into a bog within the site, excised, and capped at the top and bottom. Core was sliced at 1 cm intervals at the University of Manchester in an anaerobic bag. A total of 42 samples were generated. Soil samples were returned to Newcastle University.

  • Two sediment depth cores were collected from the River Esk estuary during low tide near the town of Ravenglass, UK. Cores were collected by the University of Manchester. Cores were sliced at 1 cm intervals from 0 - 10 cm, and at 2 cm intervals thereafter. Slicing was performed in an anaerobic bag. Samples were transferred to Newcastle University for DNA extraction. A total of 19 samples were extracted for core 1, and 18 samples extracted for core 2.

  • THIS DATASET HAS BEEN WITHDRAWN **This dataset was created for the "Britain beneath our feet" atlas using information extracted from the Geochemical Baseline Survey Of The Environment (G-BASE) For The UK . For Uranium in stream sediment data please see Geochemical Baseline Survey Of The Environment (G-BASE) For The UK ** Geochemical Baseline Survey Of The Environment (G-BASE) coverage for Uranium in stream sediment. The G-BASE programme involves systematic sampling and the determination of chemical elements in samples of stream sediment, stream water and, locally, soil, to build up a picture of the surface chemistry of the UK. The average sample density for stream sediments and water is about one site per 1.5-2km square. Analytical precision is high with strict quality control to ensure countrywide consistency. Results have been standardised to ensure seamless joins between geochemical sampling campaigns. The data provide baseline information on the natural abundances of elements, against which anomalous values due to such factors as mineralisation and industrial contamination may be compared.

  • Experimental results used to parameterise and a test a mathematical model of uranium diffusion and reaction in soil. The exeperiments and model are described in Darmovzalova J., Boghi A., Otten W., Eades, L., Roose T. & Kirk G.J.D. (2019) Uranium diffusion and time-dependent adsorption-desorption in soil: a model and experimental testing of the model. Eur. J. Soil Sci., doi: 10.1111/ejss.12814. The research was funded by NERC, Radioactive Waste Management Ltd and the Environment Agency through the Radioactivity and the Environment (RATE) programme (Grant Ref NE/L000288/1, Long-lived Radionuclides in the Surface Environment (LO-RISE)).

  • The data comprise measurements of the ‘soluble’, ‘chemically exchangeable’ and ‘isotopically exchangeable’ U concentrations in a diverse set of soils following experimental addition of UO22+ and incubation in the laboratory under controlled temperature conditions for ca. 1.7 years. The long term behaviour of U in aerobic soils was studied by conducting a laboratory-based experiment in which a set of 20 topsoils from central England with contrasting properties (e.g. pH, organic matter content, land use) were contaminated with a solution containing UO22+ in soluble form and incubated in the dark, in a moist but aerobic condition, at a temperature of 10oC for 619 days. The transformations of U in each soil microcosm were periodically monitored by means of soil extractions conducted on subsamples of incubated soils. The resulting dataset enabled quantification of the kinetics of UO22+ transformations in aerobic soils and the relationships with soil properties and land uses (arable, grassland and moorland/woodland). The dataset will be useful in developing models of long-term U bioavailability in aerobic soils under temperate conditions. Full details about this dataset can be found at https://doi.org/10.5285/0d8b2aea-574c-4cff-a8bd-17115a0b90fc

  • This dataset contains the results of a laboratory study investigating the dissolution of UO3•nH2O particles in dynamic sediment/groundwater column systems, representative of the shallow subsurface at the Sellafield Ltd. site, UK. Measurements were carried out to determine the extent of uranic particle dissolution and the speciation of dissolved uranium within the columns under contrasting biogeochemical conditions (oxic and electron-donor amended). Columns effluents were analysed periodically for key biogeochemical indicators (nitrate, sulfate) and trace metals (iron, manganese, uranium) and systems were sacrificed after 6 and 12 months of groundwater flow. Upon sacrifice, columns were cross-sectioned, and the sediment structure preserved for synchrotron micro-focus X-ray Fluorescence (XRF) mapping, and uranium L-edge X-ray Absorption Spectroscopy (XAS) measurements. Sub-samples of column sediments were also analysed for acid extractable metals, microbial abundance and classification and bioavailable Fe(II) concentrations. Experiments were performed between March 2016 and March 2017. Subsequent analyses were performed between March 2017 and December 2018. This data was collected as part of the project: Understanding radioactive ‘hot’ particle evolution in the environment funded by the UK Natural Environment Research Council (grant NE/M014088/1). Full details about this nonGeographicDataset can be found at https://doi.org/10.5285/2702e1b0-13df-4ae4-9f91-4ac4bd07bbf1

  • A worldwide compilation of 333 analyses of U and Pb concentrations in olivine-hosted melt inclusions from island arc magmas. These data were used in Delavault et al. (2016, Geology 44, 819-822) to calculate the present-day distribution of the U/Pb ratios in magmas generated in subduction setting.