nonCciKeyword

River flow

10 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Resolution

Regions

From 1 - 10 / 10
  • This dataset reports the responses of annual river flow to forestation in 43 catchments and contains 770 data points. Data shows the change in river flow following forestation at annual time scales, along control river flow measurements and associated metadata from primary and secondary sources. Data collection, processing and interpretation were performed by Laura Bentley and David A. Coomes between January 2018 and October 2019. Forestation was defined as a change in land cover from a stable, non-forested state to a forested one, independent of the long-term history of forest cover. Paired measurements of annual river flow following forestation (mm) and river flow under control land cover conditions (mm) are provided for each year that the catchment dataset satisfied our inclusion criteria. River flow response is provided as both an absolute difference (mm) and as a percentage of control flow in the same year. Estimates of catchment annual precipitation, annual potential evapotranspiration, forest age, forest area, and the year of study are provided for each river flow response data point. Metadata are provided concerning catchment land cover history, land use history, catchment area, forest type, average climate and the method of forest establishment. The dataset contains catchments that were planted with trees and catchments in which forest cover regenerated without planting. Historical forest cover was reported in some catchments, and not reported in others. The 43 catchments a distributed unevenly across the globe, in 13 countries. The length of time series for each catchment varies from 2 years to 57 years, with and average duration of 19 years. Full details about this dataset can be found at https://doi.org/10.5285/5baa5d91-d552-4fc6-8a8c-29ae45192d77

  • The data sets contain the rating curves and equations, approved stage (H) discharge (Q) data for the purposed of building river rating information for three hydrometric stations: 3KD06 and KISCOL weir on Mukurumudzi River and Eshu Bridge on Ramisi River, in Kwale. See also Wara et al. 2019: https://doi.org/10.4236/jwarp.2019.114028

  • This dataset provides 100 model realisations of daily river flow in cubic metres per second (m3/s) for 1,366 catchments, for the period 1962 to 2015. The dataset is model output from the DECIPHeR hydrological model driven by observed climate data (CEH-GEAR rainfall and CHESS-PE potential evapotranspiration). The modelled catchments correspond to locations of National River Flow Archive (NRFA) gauging stations and provide good spatial coverage across the UK. The dataset was produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) to provide national scale probabilistic flow simulations and predictions for UK drought risk analysis. MaRIUS was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity. Full details about this dataset can be found at https://doi.org/10.5285/d770b12a-3824-4e40-8da1-930cf9470858

  • This dataset is a model output, from the Grid-to-Grid hydrological model driven by observed climate data (CEH-GEAR rainfall and Oudin temperature-based potential evaporation). It provides daily mean river flow (m3/s) for 260 catchments, for the period 1891 to 2015. The catchments correspond to locations of NRFA gauging stations (http://nrfa.ceh.ac.uk/). The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity (http://www.mariusdroughtproject.org/). Full details about this dataset can be found at https://doi.org/10.5285/0ceb4f85-0bbf-49f0-ab70-cfc137ab7d4d

  • This dataset is a model output, from the Grid-to-Grid hydrological model driven by observed climate data (CEH-GEAR rainfall and MORECS potential evaporation). It provides daily mean river flow (m3/s) for 260 catchments, for the period 1960 to 2015. The catchments correspond to locations of NRFA gauging stations (http://nrfa.ceh.ac.uk/). The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity (http://www.mariusdroughtproject.org/). Full details about this dataset can be found at https://doi.org/10.5285/5f3c1a02-d5c4-4faa-9353-e8b68ce2ace2

  • This dataset is a model output, from the Grid-to-Grid hydrological model driven by weather@home2 climate model data. It provides a 100-member ensemble of monthly mean flow (m3/s) and soil moisture (mm water/m soil) on a 1 km grid for the following time periods: historical baseline (HISTBS: 1900-2006), near-future (NF: 2020-2049) and far-future (FF: 2070-2099). It also includes a baseline period (BS: 1975-2004). To aid interpretation, two additional spatial datasets are provided: - Digitally-derived catchment areas on a 1km x 1km grid - Estimated locations of flow gauging stations on a 1km x 1km grid and as a csv file. The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity. Full details about this dataset can be found at https://doi.org/10.5285/3b90962e-6fc8-4251-853e-b9683e37f790

  • This dataset is a model output, from the Grid-to-Grid hydrological model driven by observed climate data (CEH-GEAR rainfall and MORECS potential evaporation). It provides monthly mean flow (m3/s) and soil moisture (mm water/m soil) on a 1 km grid for the period 1960 to 2015. To aid interpretation, two additional spatial datasets are provided: * Digitally-derived catchment areas on a 1km x 1km grid * Estimated locations of flow gauging stations on a 1km x 1km grid and as a csv file. The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity. Full details about this dataset can be found at https://doi.org/10.5285/e911196a-b371-47b1-968c-661eb600d83b

  • This dataset is a model output, from the Grid-to-Grid hydrological model driven by observed climate data (CEH-GEAR rainfall and Oudin temperature-based potential evaporation). It provides monthly mean flow (m3/s) and soil moisture (mm water/m soil) on a 1 km grid for the period 1891 to 2015. To aid interpretation, two additional spatial datasets are provided: - Digitally-derived catchment areas on a 1km x 1km grid - Estimated locations of flow gauging stations on a 1km x 1km grid and as a csv file. The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity (http://www.mariusdroughtproject.org/). Full details about this dataset can be found at https://doi.org/10.5285/f52f012d-9f2e-42cc-b628-9cdea4fa3ba0

  • This dataset is a model output, from the Grid-to-Grid hydrological model driven by weather@home2 climate model data. It provides a 100-member ensemble of daily mean river flow (m3/s) for 260 catchments, for the following time periods: historical baseline (HISTBS: 1900-2006), near-future (NF: 2020-2049) and far-future (FF: 2070-2099). It also includes a baseline period (BS: 1975-2005). The catchments correspond to locations of NRFA gauging stations (http://nrfa.ceh.ac.uk/). The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity. Full details about this dataset can be found at https://doi.org/10.5285/f6cac471-7d92-4e6d-be8a-9f7887143058

  • This dataset is model output from the GR4J lumped catchment hydrology model. It provides 500 model realisations of daily river flow, in cubic metres per second (cumecs, m3/s), for 303 UK catchments for the period between 1891-2015. The modelled catchments are part of the National River Flow Archive (NRFA) (https://nrfa.ceh.ac.uk/) and provide good spatial coverage across the UK. These flow reconstructions were produced as part of the Research Councils UK (RCUK) funded Historic Droughts and IMPETUS projects, to provide consistent modelled daily flow data across the UK from 1891-2015, with estimates of uncertainty. This dataset is an outcome of the Historic Droughts Project (grant number: NE/L01016X/1). The data are provided in two formats to help the user account for uncertainty: (1) a 500-member ensemble of daily river flow time series for each catchment, with their corresponding model parameters and evaluation metric scores of model performance. (2) a single river flow time series (one corresponding to the top run of the 500), with the maximum and minimum daily limits of the 500 ensemble members. Full details about this dataset can be found at https://doi.org/10.5285/f710bed1-e564-47bf-b82c-4c2a2fe2810e