12 record(s)


Type of resources



INSPIRE themes

Contact for the resource

Provided by

Update frequencies


GEMET keywords

From 1 - 10 / 12
  • Survey flying (using Basler BT-67 aircraft C-GJKB) was carried out between 1 May 2014 and 12 May 2014 to measure the ice thickness, surface elevation and magnetic anomaly of the Queen Elizabeth Islands, Nunavut, Canada. The primary radar instrument was the UTIG-JPL High-Capability Radar Sounder (HICARS: Peters et al., 2005). Level 1 radar data products are hosted at NSIDC. Surface elevation data was acquired by a fixed beam Riegl laser altimeter using a solid-state infrared lasar firing at 100 Hz. A tail boom-mounted cesium vapor total field magnetometer specially configured for the aircraft measured the magnetic anomaly. Funding was provided by NERC grants NE/K004999/1, NE/K004956/1 and NE/K004956/2.

  • In 2011, aerogeophysics data were acquired over Pine Island Glacier, West Antarctica on a grid comprising 30 transverse lines across the glacier, each around 20 km long, and with a spacing of roughly 500 m between the lines. The orientation of the lines was selected to be perpendicular to the surface features visible in satellite images in the central part of the ice shelf. Elevation of the ice-surface directly beneath the aircraft was simultaneously measured using a nadir-pointing laser altimeter. We present here the processed bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar system. Data are provided as XYZ ASCII line data.

  • An airborne radar survey was flown as part of the GRADES-IMAGE project funded by BAS over the Evans Ice stream/Carson Inlet region mainly to image englacial layers and bedrock topography during the 2006/07 field season. Aeromagnetic data were also opportunistically collected. We present here the bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar depth sounding system. Data are provided as XYZ ASCII line data.

  • The survey collected a total of 11,500 km of data along 22 lines, spaced 12 km apart and oriented perpendicular to the strike of both the Bouguer anomaly field, as derived from land data (McGibbon and Smith, 1991), and the major sub-ice topographical features (Doake et al., 1983). The speed of the aircraft was set to produce a sample spacing of about 60 m and the data were collected at heights between 1600 and 2000 m above sea level. The gravity signal was recorded using a LaCoste and Romberg air/sea gravimeter, S-83, which has been kindly loaned to BAS by the Hydrographic Office of the Royal Navy. The meter was modified by the ZLS company for use in an aircraft. The equipment was deployed in a BAS De-Havilland Twin Otter aircraft. Differential, dual frequency, carrier phase, GPS measurements of the aircraft''s motion were made using Trimble and Ashtech geodetic receivers and antennas. Ice thickness data were obtained using a BAS-built, radio echo sounding system (Corr and Popple, 1994). Ice-bottom returns over most of the survey area were obtained at a sample spacing of approximately 28 m. GPS measurements were tied into base stations in International Terrain Reference Frame network (Dietrich et al., 1998) and gravity measurements to base stations in the IGSN71 net (Jones and Ferris, 1999). We present here the processed bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar system. Data are provided as XYZ ASCII line data.

  • A British Antarctic Survey Twin Otter and survey team acquired 8,300 line-km of aerogeophysics data during the Austral summer of 1998/99. Gravity and radio-echo data were acquired simultaneously with the magnetic data at a compromise constant barometric height of 2,200 m, which provides a terrain clearance of 100 m over the highest peaks. Two separate surveys were conducted; one at 5 km line spacing (tie lines at 20 km) over and stretching beyond the southern extent of the Forrestal range (main survey), and one at 2 km line spacing (tie lines at 8 km) covering the Dufek Massif (detailed survey). Ashtech Z12 dual frequency GPS receivers were used for survey navigation. Pseudorange data were supplied to a Picodas PNAV navigation interface computer, which was used to guide the pilot along the pre-planned survey lines. The actual flight path was recovered, using carrier-phase, continuous, kinematic GPS processing techniques. All pseudorange navigation data were recorded at 1 Hz on a Picodas PDAS 1000, PC-based data acquisition system. We present here the processed bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar system. Data are provided as XYZ ASCII line data.

  • This is a collection of all vintage BAS radar data that went into BEDMAP 1 (Lythe and Vaughan, 2001) that have not been released so far as line data. BEDMAP data descries the thickness of the Antarctic ice sheet. They have been collected on surveys undertaken over the past 50 years and brought together into a single database. These data have allowed the compilation of a suite of seamless digital topographic models for the Antarctic continent and surrounding ocean. Data are provided as XYZ ASCII line data.

  • This data set contains bed and surface elevation picks derived from airborne radar collected during the WISE/ISODYN project. This collaborative UK/Italian project collected ~ 61000 line km of new aerogeophysical data during the 2005/2006 austral summer, over the previously poorly surveyed Wilkes subglacial basin, Dome C, George V Land and Northern Victoria Land.

  • The EISCAT (European Incoherent Scatter ) data is from either the Ultra High Frequency (UHF) or Very High Frequency (VHF) radar observations of Polar Mesospheric Summer Echoes/Winter Echoes (PMSE/PMWE). The data archive contains EISCAT UHF or VHF radar data, processed with GUISDAP (Grand Unified Incoherent Scatter Design and Analysis Package) analysis software, of electron density, ion temperature, electron temperature or ion velocity as a function of altitude along with estimates of their uncertainty. The time and range resolution is variable depending on the analysis settings. Data was collected in July 2012, June-July 2013, June-July 2014 and November 2014.

  • Between mid-December 2010 and mid-January 2011, ~25,000km of aerogeophysical data were collected from the Institute and Moller ice streams, West Antarctica. Data coverage extended from the grounding lines to the ice divide, with a high resolution grid centered over the region of most pronounced ice flow acceleration. Data was collected using the BAS aerogeophysical equipped Twin Otter aircraft "Bravo Lima". Primary data types collected were ice-sounding radar, laser ranging, airborne gravity and airborne magnetics; a processed ice thickness dataset is also available. The data were acquired during twenty eight survey flights (sixteen flown from remote field camp C110, ten from Patriot Hills and two "transit" flights). Funding was provided by the UK NERC AFI grant NE/G013071/1.

  • In 2014 polarimetric phase sensitive radar data were collected at Korff Ice Rise, West Antarctica, with the aim of studying fabric within the ice column and ice bed properties. Data were collected at sites within 700m of one another along the axis of the ice divide. The radar data were collected by rotating the antenna through 180 deg to allow reconstruction of the azimuthal variation in power and phase. This study is part of the British Antarctic Survey programme Polar Science for Planet Earth. All data were collected with the support of the British Antarctic Survey. The ApRES fieldwork were funded by Natural Environmental Research Council grant NE/J008087/1, led by Richard Hindmarsh.