Natural Environment Research Council Designated Data Centres

1106 record(s)


Type of resources



INSPIRE themes

Contact for the resource

Provided by


Update frequencies

From 1 - 10 / 1106
  • The RAGNARoCC dataset includes surface and deep ocean measurements of greenhouse gas concentrations including carbon dioxide, methane and nitrous oxide. The dataset was collected in the North Atlantic Ocean during the RRS James Clark Ross cruise JR20140531 (JR302) which surveyed from Canada, to Greenland, to the United Kingdom via Iceland. The JR302 cruise started on 6th June 2014 and finished on 22nd July 2014. Some water samples were analysed aboard ship, whilst others were subsequently analysed ashore. The dataset is based on data and water samples collected by surface underway measurements and during CTD stations from the RRS James Clark Ross. The RAGNARoCC dataset was collected to understand the size and variability of the sources and sinks of greenhouse gases between the ocean and atmosphere in the North Atlantic Ocean. The dataset was produced by various members of the RAGNARoCC project consortium. Dr. Brian King was the cruise principal investigator for JR302. The data are made available by the British Oceanographic Data Centre, with relevant data also contributing to community research portals such as The dataset currently includes some of the data from cruise JR302, but is expected to include additional data from JR302. Additional data is also expected from the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) mooring; the Voluntary Observing Ship (VOS) MV Benguela Stream; data from a Bay of Biscay Ferry-box route; and the RRS Discovery cruise DY040.

  • This dataset consists of silicon isotope data from deep-sea sediment cores taken off southeast Iceland. Samples of sea sponges were collected using piston cores and sediment cores aboard the RV Celtic Explorer in 2008 and dried or frozen for transportation. Organic matter was removed and samples were preserved for later analysis. Sample analysis occurred in 2012 as part of a comprehensive study of the carbon cycle. The data collected form the field component of the NERC-funded project "Unravelling the carbon cycle using silicon isotopes in the oceans". The project aimed to investigate deep sea sponges and the silicon they produce, in an effort to piece together the links between the supply of vital nutrients in different parts of the ocean and the crucial role other marine organisms play in absorbing CO2 from the atmosphere and storing it in deep sea sediments as organic carbon. The Discovery Science project was composed of New Investigators (FEC) Grant reference NE/J00474X/1 led by Dr. Katherine Rosemary Hendry of Cardiff University, School of Earth and Ocean Sciences. The project ran from 26 January 2012 to 30 September 2013. The silicon isotope data have been received by BODC as raw files, and will be processed and quality controlled using in-house BODC procedures and made available online in the near future. The raw files are available on request.

  • The dataset consists of northward and eastward baroclinic and barotropic current vectors derived from a 40 year run of the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) numerical model, run from 01 January 1964 to 31 December 2004. The dataset consists of 41 data files in Climate and Forecast (CF) compliant NetCDF format. The data are supplied as a gridded dataset covering the entire northwest European continental shelf and extending out into the Atlantic Ocean. The grid resolution varies from 7.8 km to 14.2 km along the longitudinal axis and is at 12.3 km on the latitudinal axis. The model contains 40 depth layers. The model run was from 01 January 1964 to 31 December 2004. The barotropic currents were generated every 20 seconds, while the baroclinic currents were generated every 300 seconds. These generated currents were then averaged over a 25 hour tidal cycle to remove tidal current influence from the data. The dataset consists of 41 data files in Climate and Forecast (CF) compliant NetCDF format. The model simulations were run on the HECTOR supercomputer managed by the University of Edinburgh. The data were generated by the National Oceanography Centre (NOC) Liverpool as part of Natural Environment Research Council (NERC) National Capability (NC) funding looking at multi-decadal variability and trends in temperature of the northwest European continental shelf.

  • The dataset comprises chlorophyll-a concentrations from water samples taken during RRS James Clark Ross cruise JR304, from 15/11/2014 - 17/12/2014. The cruise sailed from Punta Arenas, Chile, returning to Stanley, Falkland Islands. Samples were taken during transit to Signy Island (South Orkneys), and then up through the Scotia Sea to BAS survey sites P2 and P3 as well as near South Georgia and in the Western Core Box survey area to the north of the island of South Georgia. 112 samples were collected from the ship’s uncontaminated underway supply, with an intake at approximately 6 m depth, every two hours during transit periods. 103 samples were collected, using a rosette sampler, from the upper 1000m during CTD (conductivity, temperature and depth probe) deployments. Each 300ml sample was filtered through a 0.8µm pore size, 25mm diameter, MPF300 filter, rinsed with milliQ water, placed in an eppendorf tube and stored at -20°C for later analysis. Samples were extracted in 90 % acetone for 22-24 hours at 4°C and measured on a Trilogy Turner Designs 7200 lab fluorometer calibrated with a pure chlorophyll-a standard (Sigma, UK) and set up following the method of Welschmeyer (1994). Data have not been adjusted for blanks. The data set was from the annual Western Core Box Cruise run by British Antarctic Survey (BAS). Data were collected to support the PhD of Anna Belcher and provide seasonal context for the cruise in terms of the primary production in the surface ocean. Chlorophyll samples were taken by Jenny Thomas (BAS), Gabi Stowasser (BAS), Sophie Fielding(BAS), Vicky Peck (BAS), Jess Gardner (University of East Anglia and BAS), Cecilia Liszka (BAS), Manon Duret (National Oceanography Centre, NOC), Anna Belcher (NOC), Anna Mikis (Cardiff University) , Marianne Wootton (Sir Alistair Hardy Foundation for Ocean Science), Sebastien Floter (GEOMAR Kiel). Chlorophyll samples were analysed aboard the R.R.S. James Clark Ross by Manon Duret and Anna Belcher from NOC.

  • This dataset contains tabulations of the heights and times of tidal high and low water at St. Helena from 1 October 1826 to 31 October 1827. The tide was recorded by an instrument designed by Manuel Johnson, a future President of the Royal Astronomical Society, while waiting for an observatory to be built. The tabulations in this dataset were obtained by inspection of photographs of Johnson's tabulation sheets that are held in the archive RGO 6/500 in the Royal Greenwich Observatory collection at Cambridge University Library. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnson’s tide gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day tide gauge measurements from the same site. Johnson’s method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnson’s data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computer files as part of this study for the benefit of future researchers. This dataset supports the paper “Cartwright, D.E.; Woodworth, P.L.; Ray, R.D.. 2017 Manuel Johnson's tide record at St. Helena. History of Geo- and Space Sciences”. Richard Ray (National Aeronautics and Space Administration) and Philip Woodworth (National Oceanography Centre) modified and added figures to David E. Cartwright’s original draft paper and sections of text have been updated, but otherwise the paper is as he intended it. This work was undertaken when Philip Woodworth was an Honorary Research Fellow at the National Oceanography Centre in Liverpool in receipt of an Emeritus Fellowship from the Leverhulme Trust. Part of this work was funded by UK Natural Environment Research Council National Capability funding.

  • A set of underwater noise observations which provide information on noise levels over an 21 year period potentially setting a base line for future environmental monitoring. The data were collected for military operations by RAF Nimrod aircraft using air-deployed sonobuoys. They consist of averaged noise levels, measured in db, at a range of frequencies and depths throughout the UK Exclusive Economic Zone (EEZ).

  • Historic sea level data from 6 sites on the South coast of England, recovered as part of a PhD on sea level trends in the English Channel. Devonport: 1961-1986, 1988-1990 Newhaven: 1942-1948, 1950-1951, 1953-1957, 1964-1965, 1973, 1988 Portsmouth: 1961-1990 Southampton: 1935-1979, 1982-1990 St. Marys: 1968-1969, 1973, 1975, 1977-1978, 1987-1989 Weymouth: 1967-1971, 1983-1987 There are raw data files and cleaned data files. The cleaned files have been corrected for datum changes which are recorded in the readme files for each site.

  • The dataset combines fluorescent time-lapse sediment profile imaging (f-SPI) and diffusion gradient thin gels (DGT) to examine, in situ, the link between an important benthic ecosystem process (bioturbation) and ecosystem functioning (trace metal cycling) in Loch Creran, Scotland. The dimensions of the fg-SPI faceplate were 15x21.5cm (=322.50cm2), but after subtraction of the area occupied by the two DGT gels (=74cm2) the field of view reduces to 9x21.5cm (=248.5cm2). The camera (Nikcon D100, 2000 x 3000 pixels = 6 megapixels effective resolution = 75x75um per pixel) was set to an exposure of 1/60 f=2.0 and film speed equivalent to ISO 400. For each time-lapse sequence images were taken every 5 minutes for a period of 96h (n=1152 images per deployment). Three time-lapse movies are presented here to accompany Teal et. al. 2012 Biogeosciences. Data produced by Dr Lorna Teal (Institute for Marine Resources and Ecosystem Studies, IJmuiden), Dr Ruth Parker (Centre for Environment, Fisheries and Aquaculture Science), and Dr Martin Solan (National Oceanography Centre, Southampton).

  • The Mediterranean-Alpine Experiment (MEDALPEX) data set comprises over 200,000 hourly sea level measurements. Data are included from 28 sites around the northern coast of the Mediterranean and one in the Atlantic at Cadiz. Measurements were collected from December 1981 and September 1982, with a special observing period (SOP) between 15 February and 30 April 1982. Twenty eight coastal sites were instrumented with conventional stilling wells, while one offshore site off Corsica used a bottom pressure recorder. The data are stored, together with benchmark information, as time series at each site with hourly values of sea surface elevation recorded to the nearest millimetre. The aim of the MEDALPEX Experiment was to study the role of atmospheric forcing on the dynamics of the Western Mediterranean. Data were supplied by laboratories in Belgium, France, Monaco, Italy, Spain, UK and former Yugoslavia. Responsibility for assembling, quality controlling and analyzing the sea level data collected during MEDALPEX was vested in the British Oceanographic Data Centre (BODC).

  • To understand seasonal climatic variability in the North East Atlantic, a fortnightly resolution marine climate record from 1353–2006 was constructed for shallow inshore waters on the west coast of Scotland using red coralline algae. The data are available in an Excel file as mean winter and summer temperatures with 95% confidence intervals for each year from 1353 to 2006. SCUBA was used to collect a 46 cm core from a coralline algal (Lithothamnion glaciale) deposit in Loch Sween, Scotland. The core was frozen and sectioned longitudinally and into 2 cm horizons. Coralline algae from each horizon were sectioned along the length of each thallus. Mg, Ca, and Sr were quantified along each thallus using electron microprobe analysis. For the live collected surface specimens, this process enabled absolute dates to be assigned to each year’s growth band present within the coralline algae. Five thalli down core were selected for radiocarbon rangefinder dating at the Scottish Universities Environmental Research Centre. Live thalli and the five rangefinder thalli were used as anchor points in construction of a combined chronology which was fine-tuned using dendrochnological techniques. Twenty seven (including anchors) Mg/Ca time series were available; each from an individual thallus. The work was funded by the Natural Environmental Research Council and the Royal Society of Edinburgh.