nonCciKeyword

NERC_DDC

1906 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Service types

Scale

Resolution

Regions

GEMET keywords

From 1 - 10 / 1906
  • This poster was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-14. The data consists of a poster presented at the UKCCSRC biannual meeting in Cranfield, April 20th 2015. The poster describes an overview of work carried-out on behalf of the 'Fault seal controls on CO2 storage capacity in aquifers' project funded by the UKCCS Research Centre, grant number UKCCSRC-C1-14. Three main work strands are briefly described: 1) The Captain Sandstone aquifer is studied for the geomechanical integrity of faults, 2) Shallow gas accumulations in the Netherlands sector of the Southern North Sea provide an opportunity to study their coincidence with faulting while commonalities in the nature of the faults provide an indication of factors that might lead to fault leakage in CO2 storage sites. 3) The Fizzy gas field which is naturally rich in CO2 is studied for its fault seal potential as a natural analogue for fault-bounded storage sites.

  • This poster on the UKCCSRC Call 1 project Multiphase flow modelling for hazard assessment of dense phase CO2 pipelines containing impurities was presented at the CSLF Call project poster reception, London, 27.06.16. Grant number: UKCCSRC-C1-07. The aim of the project is to develop and validate experimentally a heterogeneous flow model for predicting the transient depressurisation and outflow following the puncture of dense-phase CO2 pipelines containing typical impurities. Given that CO2 is an asphyxiant at high concentrations, this information is pivotal to assessing all the hazard consequences associated with CO2 pipeline failure, including fracture propagation behaviour, atmospheric dispersion, emergency shutdown valve dynamics and emergency blowdown.

  • Advances in our understanding of the Earth's climate system will rely on our ability to link high-resolution sedimentary archives from the oceans, ice-cores and terrestrial sequences, and to interpret these records in the context of novel Earth system modeling approaches. Few places exist in the world where sufficiently detailed and unambiguous marine-ice-terrestrial linkages are possible. One challenge for IODP, and the broader drilling community in general, is to identify and recover marine, ice and terrestrial sequences from appropriate locations and with adequate temporal resolution to study processes of the integrated climate system. One such region is the southwest Iberian Margin where it has been demonstrated that the surface oxygen isotopic record could be correlated precisely to temperature variations (i.e., d18O) in Greenland ice cores. By comparison, the benthic d18O signal in the same core resembled the temperature record from Antarctica. Moreover, the narrow continental shelf and proximity of the Tagus River results in the rapid delivery of terrestrial material to the deep-sea environment off Portugal, thereby providing a record of atmospheric changes and permitting correlation of marine and ice core records to European terrestrial sequences. This is the only place in the ocean where such marine-ice-terrestrial correlations have been demonstrated unambiguously. It is therefore highly desirable to extend the Iberian Margin record to encompass the full range of Plio-Pleistocene glacial-interglacial cycles by drilling with the JOIDES Resolution (JR). Towards this end, Proposal 771-Full was submitted to IODP by an international group of 16 proponents led by the UK. The proposal was well received and reviewed by the Science Steering and Evaluation Panel (SSEP), but the IODP Site Survey Panel (SSP) identified major inadequacies in the quality of the seismic data: "The panel raised several concerns on the suitability of the submitted data with regard to its appropriateness, both to image the target properly and with regard to the site location. The panel also discussed the need for 2 high-resolution lines and considered that places where Mass Transport Deposits (MTDs) or closely spaced faults were present deserved these 2 high-resolution lines." This proposal requests 25 days of ship time to collect the necessary seismic and sediment data needed to meet the SSP requirements and recommendations. Several "stand-alone" scientific objectives are also proposed related to the modern hydrography and sedimentary processes on the southwest Iberian Margin, and calibration of palaeoceanographic proxies used for reconstructing past changes in deep-water circulation. This value-added science will make effective use of ship time and contribute key information needed to interpret the downcore records to be obtained by IODP.

  • There were a number of aims of this project - to develop initial flowsheets and designs for CLC with oxygen uncoupling; to model and design reactors; and to produce and test a variety of novel materials for CLC with oxygen uncoupling. The project has succeeded in a number of aims; to develop and test materials (Cambridge), to conduct an initial test of CLC with oxygen uncoupling (the first at scale in the UK, conducted at Cranfield, and the major stated aim of the project - see Figure 2-13), and to model and develop a novel reactor for CLC with oxygen uncoupling (Imperial). Overall, these aspects exceeded the initial project brief. Initial time-dependent flowsheets were developed at Cambridge for CLC processes - unfortunately key staff loss led to a significant hiatus in the activity. Industrial reviewing was limited because of the challenges in developing the flowsheeting activity.

  • This poster on the UKCCSRC Call 1 project, Fault seal controls on storage capacity, was presented at the Cranfield Biannual, 21.04.15. Grant number: UKCCSRC-C1-14.

  • The project will three-dimensionally image hydraulically conductive features in the reservoir, caprock and overburden of an active CO2 injection site: the Aquistore site, Canada. Our research will provide important information on potential migration pathways within the storage complex to inform future monitoring strategies at the Aquistore site and at future storage sites. We will monitor micro-seismic events prior to, and during, CO2 injection using a three-component nanoseismic surface monitoring array which will complement data collected by the existing geophone network at the site. This analysis can be used to provide deep focussed monitoring information on permeability enhancement near the injection point. As injection continues it will also enable imaging of any flowing features within the caprock. Grant number: UKCCSRC-C1-19.

  • This project will develop and experimentally validate a heterogeneous flow model for predicting the transient depressurisation and outflow following the puncture of dense phase CO2 pipelines containing typical impurities. Such data is expected to serve as the source term for the quantitative consequence failure assessment of CO2 pipelines including near field and far field dispersion, fracture propagation and blowdown. Grant number: UKCCSRC-C1-07. UKCCSRC - UK Carbon Capture and Storage Research Centre.

  • This poster on the UKCCSRC Call 1 project, Determination of water Solubility in CO2 Mixtures, was presented at the Cambridge Biannual, 02.04.14. Grant number: UKCCSRC-C1-21.

  • The data result from a cooperative project between the U.K., U.S., Germany, Spain, and Portugal. This 2013 seismic experiment surveyed the Galicia Bank region off Iberia with the RV Marcus Langseth. The goal was to collect 3D seismic reflection data specifically designed to reveal the 3D structures generated during the rifting of the Galicia margin and to study the rifted continental to oceanic crust transition in the Deep Galicia Margin west of Spain. The data correspond to a 68.5km x 20 km volume down to 14s TWT with a nominal inline spacing of 6.25 m and a cross-line spacing of 50m, including 800 inlines and 5500 cross-lines. References Bayrakci, G., Minshull, T.A., Sawyer, D.S., Reston, T.J., Klaeschen, D., Papenberg, C., Ranero, C., Bull, J.M., Davy, R.G., Shillington, D.J., Perez-Gussinye, M., and Morgan, J.K., 2016, Fault-controlled hydration of the upper mantle during continental rifting, Nature Geoscience, vol. 9, p. 3840388, DOI: 10.1038/ngeo2671. URL: http://www.nature.com/ngeo/journal/v9/n5/full/ngeo2671.html R. G. Davy, J. V. Morgan, T. A. Minshull, G. Bayrakci, J. M. Bull, D. Klaeschen, T. J. Reston, D. S. Sawyer, G. Lymer, D. Cresswell, 2017. Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion. Geophysical Journal International, Volume 212, Issue 1, 1 January 2018, Pages 244–263, https://doi.org/10.1093/gji/ggx415 C.Nur Schuba, Gary G.Gray, Julia K.Morgan, Dale S.Sawyer, Donna J. Shillington, Tim J.Reston, Jonathan M.Bull, Brian E.Jordan, 2018. A low-angle detachment fault revealed: Three-dimensional images of the S-reflector fault zone along the Galicia passive margin. Earth and Planetary Science Letters, 492, (2018), 232–238, https://doi.org/10.1016/j.epsl.2018.04.012

  • Infrasound Data collected at Volcan de Fuego (Guatemala) during three campaigns (May and November 2018, and June 2019). Associated article https://doi.org/10.3390/rs11111302