From 1 - 3 / 3
  • [THIS DATASET HAS BEEN WITHDRAWN]. Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) Hydrometric Areas (Kral et al. [1]). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [2]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Standardised Precipitation Index time series for IHU hydrometric areas (1961-2012)' [SPI_IHU_HA] (Tanguy et al., 2015 [3]), apart from the temporal extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Keller et al., 2015 [4], Tanguy et al., 2014 [5]) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting documentation for more details). Within Historic Droughts project (grant number: NE/L01016X/1), the Met Office has digitised historic rainfall and temperature data to produce high quality historic rainfall and temperature grids, which motivated the change in the underlying data to calculate SPI. The methodology to calculate SPI is the same in the two datasets. [1] Kral, F., Fry, M., Dixon, H. (2015). Integrated Hydrological Units of the United Kingdom: Hydrometric Areas without Coastline. NERC-Environmental Information Data Centre doi:10.5285/3a4e94fc-4c68-47eb-a217-adee2a6b02b3 [2] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. [3] Tanguy, M.; Kral., F.; Fry, M.; Svensson, C.; Hannaford, J. (2015). Standardised Precipitation Index time series for Integrated Hydrological Units Hydrometric Areas (1961-2012). NERC Environmental Information Data Centre. https://doi.org/10.5285/5e1792a0-ae95-4e77-bccd-2fb456112cc1 [4] Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., and Dixon, H.: CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use, Earth Syst. Sci. Data Discuss., 8, 83-112, doi:10.5194/essdd-8-83-2015, 2015. [5] Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D. G.; Keller, V. D. J. (2014). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2012) [CEH-GEAR]. NERC Environmental Information Data Centre. https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e Full details about this dataset can be found at https://doi.org/10.5285/d8655cc9-b275-4e77-9e6c-1b16eee5c7d5

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) groups (Kral et al., 2015; https://doi.org/10.5285/f1cd5e33-2633-4304-bbc2-b8d34711d902). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 9, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Standardised Precipitation Index time series for IHU Groups (1961-2012) [SPI_IHU_groups]' (Tanguy et al., 2015; https://doi.org/10.5285/dfd59438-2170-4472-b810-bab33a83d09f), apart from the temporal extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Tanguy et al., 2014; https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting information for more details). Within Historic Droughts project (grant number: NE/L01016X/1), the Met Office has digitised historic rainfall and temperature data to produce high quality historic rainfall and temperature grids, which motivated the change in the underlying data to calculate SPI. The methodology to calculate SPI is the same in the two datasets. This release supersedes the previous version, https://doi.org/10.5285/047d914f-2a65-4e9c-b191-09abf57423db, as it addresses localised issues with the source data (Met Office monthly rainfall grids) for the period 1960 to 2000. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/a01e09b6-4b40-497b-a139-9369858101b3

  • Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) Hydrometric Areas (Kral et al., 2015; https://doi.org/10.5285/3a4e94fc-4c68-47eb-a217-adee2a6b02b3). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 9, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Standardised Precipitation Index time series for IHU hydrometric areas (1961-2012)' [SPI_IHU_HA] (Tanguy et al., 2015; https://doi.org/10.5285/5e1792a0-ae95-4e77-bccd-2fb456112cc1), apart from the temporal extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Tanguy et al., 2014; https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting documentation for more details). Within Historic Droughts project (grant number: NE/L01016X/1), the Met Office has digitised historic rainfall and temperature data to produce high quality historic rainfall and temperature grids, which motivated the change in the underlying data to calculate SPI. The methodology to calculate SPI is the same in the two datasets. This release supersedes the previous version, https://doi.org/10.5285/d8655cc9-b275-4e77-9e6c-1b16eee5c7d5, as it addresses localised issues with the source data (Met Office monthly rainfall grids) for the period 1960 to 2000. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. Full details about this dataset can be found at https://doi.org/10.5285/a754cae2-d6a4-456e-b367-e99891d7920f