nonCciKeyword

Elevation

1012 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Service types

Scale

Resolution

Regions

GEMET keywords

From 1 - 10 / 1012
  • This is a high resolution spatial dataset of Digital Surface Model (DSM) data in South West England. It is a part of outcomes from the CEH South West (SW) Project. There is also a Digital Terrain Model (DTM) dataset covering the same areas available from the SW project. Both DTM and DSM cover an area of 9424 km2 that includes all the land west of Exmouth (i.e. west of circa 3 degrees 21 minutes West). The DSM includes the height of features on the bare earth such as buildings or vegetation (if present). An overview of the TELLUS project is available on the web at http://www.tellusgb.ac.uk/. Full details about this dataset can be found at https://doi.org/10.5285/b81071f2-85b3-4e31-8506-cabe899f989a

  • This resource is the raw data from a topographic survey of the Sourhope field experiment site, conducted by the Department of Environmental Science, University of Stirling in April and May 2000. The data are available to match to other data sets from the field site, or to analyse in more detail. The data were collected as part of the NERC Soil Biodiversity Thematic Programme, centred upon the intensive study of a large field experiment located at the Macaulay Land Use Research Institute (now the James Hutton Institute)'s farm at Sourhope in the Scottish Borders (Grid reference: NT8545019630). During this time, the site was monitored to assess changes in above ground biomass production (productivity), species composition and relative abundance (diversity). Full details about this dataset can be found at https://doi.org/10.5285/d5b78255-b834-485e-8aa4-590ddf604bfd

  • Historical sea level data for the Thames region. These data were originally screened as part of an Environment Agency project on extreme sea level in the Thames estuary. Coryton: 1966-1970, 1973-1974 North Woolwich: 1950, 1955-1963, 1965-1967, 1969-1970, 1973-1974 Southend: 1981-1983 Tilbury: 1931-1945, 1960-1961, 1967, 1970, 1984 Tower Pier: 1928-1942, 1944-1945, 1947-1951, 1954-1955, 1958, 1960-1966, 1973

  • The UK national network of sea level gauges was established after violent storms in the North Sea in 1953 resulted in serious flooding in the Thames Estuary. The data are required for research and operational use and to facilitate specific scientific studies of coastal processes such as tidal response, storm surge behaviour and sea level rise; and for underpinning local and national operational systems such as the Storm Tide Forecasting Service at the Met Office. BODC has a special responsibility for the remote monitoring and retrieval of sea level data from the network. Daily checks are kept on the performance of the gauges and the data are downloaded weekly. These are then routinely processed and quality controlled prior to being made available.

  • Historic sea level data from 6 sites on the South coast of England, recovered as part of a PhD on sea level trends in the English Channel. Devonport: 1961-1986, 1988-1990 Newhaven: 1942-1948, 1950-1951, 1953-1957, 1964-1965, 1973, 1988 Portsmouth: 1961-1990 Southampton: 1935-1979, 1982-1990 St. Marys: 1968-1969, 1973, 1975, 1977-1978, 1987-1989 Weymouth: 1967-1971, 1983-1987 There are raw data files and cleaned data files. The cleaned files have been corrected for datum changes which are recorded in the readme files for each site.

  • This dataset contains logged and manual observations of groundwater levels for piezometers at the Centre for Ecology & Hydrology (CEH) River Lambourn Observatory wetlands at Boxford, Berkshire, for the period February 1 2012 to January 16 2015 (01/02/2012 to 16/01/2015). The CEH River Lambourn Observatory located in Berkshire, UK (51.445o N 1.384o W) comprises c. 10 ha of riparian wetland which is bordered to the east by a 600 m stretch of the River Lambourn. The subsurface architecture comprises bedrock Chalk, overlain by gravels and then peat. Also presented are datums and ground levels for each piezometer, with data available for groundwater levels in peat, gravels and chalk. Groundwater heads were routinely checked at all piezometers by manually dipping observed water levels. At selected piezometers groundwater heads were monitored every 15 minutes using pressure transducers. Piezometers were not anchored to bedrock, though piezometer datum movement due to peat compressibility with saturation was discounted after comparisons of level surveys. Full details about this dataset can be found at https://doi.org/10.5285/f4b8ca09-31a7-4f20-9fc1-eb35744e28d6

  • The dataset contains 39148 years of sea level data from 1355 station records, with some stations having alternative versions of the records provided from different sources. GESLA-2 data may be obtained from www.gesla.org. The site also contains the file format description and other information. The text files contain headers with lines of metadata followed by the data itself in a simple column format. All the tide gauge data in GESLA-2 have hourly or more frequent sampling. The basic data from the US National Atmospheric and Oceanic Administration (NOAA) are 6-minute values but for GESLA-2 purposes we instead settled on their readily-available 'verified hourly values'. Most UK records are also hourly values up to the 1990s, and 15-minute values thereafter. Records from some other sources may have different sampling, and records should be inspected individually if sampling considerations are considered critical to an analysis. The GESLA-2 dataset has global coverage and better geographical coverage that the GESLA-1 with stations in new regions (defined by stations in the new dataset located more than 50 km from any station in GESLA-1). For example, major improvements can be seen to have been made for the Mediterranean and Baltic Seas, Japan, New Zealand and the African coastline south of the Equator. The earliest measurements are from Brest, France (04/01/1846) and the latest from Cuxhaven, Germany and Esbjerg, Denmark (01/05/2015). There are 29 years in an average record, although the actual number of years varies from only 1 at short-lived sites, to 167 in the case of Brest, France. Most of the measurements in GESLA-2 were made during the second half of the twentieth century. The most globally-representative analyses of sea level variability with GESLA-2 will be those that focus on the period since about 1970. Historically, delayed-mode data comprised spot values of sea level every hour, obtained from inspection of the ink trace on a tide gauge chart. Nowadays tide gauge data loggers provide data electronically. Data can be either spot values, integrated (averaged) values over specified periods (e.g. 6 minutes), or integrated over a specified period within a longer sampling period (e.g. averaged over 3 minutes every 6 minutes). The construction of this dataset is fundamental to research in sea level variability and also to practical aspects of coastal engineering. One component is concerned with encouraging countries to install tide gauges at locations where none exist, to operate them to internationally agreed standards, and to make the data available to interested users. A second component is concerned with the collection of data from the global set of tide gauges, whether gauges have originated through the GLOSS programme or not, and to make the data available. The records in GESLA-2 will have had some form of quality control undertaken by the data providers. However, the extent to which that control will have been undertaken will inevitably vary between providers and with time. In most cases, no further quality control has been made beyond that already undertaken by the data providers. Although there are many individual contributions, over a quarter of the station-years are provided by the research quality dataset of UHSLC. Contributors include: British Oceanographic Data Centre; University of Hawaii Sea Level Center; Japan Meteorological Agency; US National Oceanic and Atmospheric Administration; Puertos del Estado, Spain; Marine Environmental Data Service, Canada; Instituto Espanol de Oceanografica, Spain; idromare, Italy; Swedish Meteorological and Hydrological Institute; Federal Maritime and Hydrographic Agency, Germany; Finnish Meteorological Institute; Service hydrographique et oc?anographique de la Marine, France; Rijkswaterstaat, Netherlands; Danish Meteorological Institute; Norwegian Hydrographic Service; Icelandic Coastguard Service; Istituto Talassographico di Trieste; Venice Commune, Italy;

  • A large number of charts (originals and copies) together with tabulations of data are also available, some of which date back to the 1850s. A more detailed description of these will be available once they have been systematically catalogued and archived.

  • This database, and the accompanying website called ‘SurgeWatch’ (http://surgewatch.stg.rlp.io), provides a systematic UK-wide record of high sea level and coastal flood events over the last 100 years (1915-2014). Derived using records from the National Tide Gauge Network, a dataset of exceedence probabilities from the Environment Agency and meteorological fields from the 20th Century Reanalysis, the database captures information of 96 storm events that generated the highest sea levels around the UK since 1915. For each event, the database contains information about: (1) the storm that generated that event; (2) the sea levels recorded around the UK during the event; and (3) the occurrence and severity of coastal flooding as consequence of the event. The data are presented to be easily assessable and understandable to a wide range of interested parties. The database contains 100 files; four CSV files and 96 PDF files. Two CSV files contain the meteorological and sea level data for each of the 96 events. A third file contains the list of the top 20 largest skew surges at each of the 40 study tide gauge site. In the file containing the sea level and skew surge data, the tide gauge sites are numbered 1 to 40. A fourth accompanying CSV file lists, for reference, the site name and location (longitude and latitude). A description of the parameters in each of the four CSV files is given in the table below. There are also 96 separate PDF files containing the event commentaries. For each event these contain a concise narrative of the meteorological and sea level conditions experienced during the event, and a succinct description of the evidence available in support of coastal flooding, with a brief account of the recorded consequences to people and property. In addition, these contain graphical representation of the storm track and mean sea level pressure and wind fields at the time of maximum high water, the return period and skew surge magnitudes at sites around the UK, and a table of the date and time, offset return period, water level, predicted tide and skew surge for each site where the 1 in 5 year threshold was reached or exceeded for each event. A detailed description of how the database was created is given in Haigh et al. (2015). Coastal flooding caused by extreme sea levels can be devastating, with long-lasting and diverse consequences. The UK has a long history of severe coastal flooding. The recent 2013-14 winter in particular, produced a sequence of some of the worst coastal flooding the UK has experienced in the last 100 years. At present 2.5 million properties and £150 billion of assets are potentially exposed to coastal flooding. Yet despite these concerns, there is no formal, national framework in the UK to record flood severity and consequences and thus benefit an understanding of coastal flooding mechanisms and consequences. Without a systematic record of flood events, assessment of coastal flooding around the UK coast is limited. The database was created at the School of Ocean and Earth Science, National Oceanography Centre, University of Southampton with help from the Faculty of Engineering and the Environment, University of Southampton, the National Oceanography Centre and the British Oceanographic Data Centre. Collation of the database and the development of the website was funded through a Natural Environment Research Council (NERC) impact acceleration grant. The database contributes to the objectives of UK Engineering and Physical Sciences Research Council (EPSRC) consortium project FLOOD Memory (EP/K013513/1).

  • The Mediterranean-Alpine Experiment (MEDALPEX) data set comprises over 200,000 hourly sea level measurements. Data are included from 28 sites around the northern coast of the Mediterranean and one in the Atlantic at Cadiz. Measurements were collected from December 1981 and September 1982, with a special observing period (SOP) between 15 February and 30 April 1982. Twenty eight coastal sites were instrumented with conventional stilling wells, while one offshore site off Corsica used a bottom pressure recorder. The data are stored, together with benchmark information, as time series at each site with hourly values of sea surface elevation recorded to the nearest millimetre. The aim of the MEDALPEX Experiment was to study the role of atmospheric forcing on the dynamics of the Western Mediterranean. Data were supplied by laboratories in Belgium, France, Monaco, Italy, Spain, UK and former Yugoslavia. Responsibility for assembling, quality controlling and analyzing the sea level data collected during MEDALPEX was vested in the British Oceanographic Data Centre (BODC).