EARTH SCIENCE > Cryosphere > Glaciers/Ice Sheets > Glacier Elevation/Ice Sheet Elevation

23 record(s)


Type of resources



INSPIRE themes

Contact for the resource

Provided by

Update frequencies



GEMET keywords

From 1 - 10 / 23
  • A digital elevation model of the bed of Rutford Ice Stream, Antarctica, derived from radio-echo sounding data. The data cover an 18 x 40 km area immediately upstream of the grounding line of the ice stream. This area is of particular interest because repeated seismic surveys have shown that rapid erosion and deposition of subglacial sediments has taken place. The bed topography shows a range of different subglacial landforms including mega-scale glacial lineations, drumlins and hummocks. This dataset will form a baseline survey which, when compared to future surveys, should reveal how active subglacial landscapes change over time. The dataset comprises observed ice thickness data, an interpolated bed elevation grid, observed surface elevation data and a surface elevation grid.

  • A time series of the mean surface elevation along a transect across Kangerdlugssuaq Glacier from Feb 2012 to May 2018. Funding: Data were processed under NERC project CALISMO NE/P011365/1. Data were acquired under NERC project NE/I007148/1. Data were supplied by DLR.

  • The text file (.csv) contains d18O changes simulated at six Greenland deep ice cores (NEEM, NGRIP, GRIP, GISP2, Camp Century and DYE3) from 69 simulations performed using the isotope-enabled HadCM3 climate model forced with mid last interglacial boundary conditions, centred at 125,000 years ago. HadCM3 is used to reproduce the d18O response to 69 modified Last Interglacial (LIG) Greenland Ice Sheet (GIS) morphologies at the ice-core sites. To parameterise the set of 69 GIS morphologies, we undertake a Principal Component Analysis (PCA) approach. The text file also contains the 8PC coefficients for each of the 69 morphologies. The netcdf file (.nc) contains the 8PC shapes and the average shape. To obtain any of the 69 GIS morphologies: (1) store the 8 PC coefficients of a specific GIS morphology and, (2) take a linear combination of the PC shapes (according to those coefficients) and add the average shape. Funding was provided by the following grants: EPSRC-funded Past Earth Network (Grant number EP/M008363/1); NERC funding through grants NE/P009271/1, NE/P013279/1, NE/J004804/1, and Irene Malmierca''s PhD studentship.

  • Radio-echo sounding (RES) data was collected between 4 and 11 December 2012, using the British Antarctic Survey Deep-Look Radio-Echo Sounder (DELORES). From this dataset a digital elevation model (DEM) for Starbuck Glacier was created. The data consists of grids relating to ice-thickness and bedrock elevation for the glacier as well as the RES data.

  • The Antarctic mass trends have been collated from a combination of different remote sensing datasets. These are trends of yearly elevation changes over Antarctica for the period 2003-2013 due to the different geophysical processes driving changes in Antarctica: ice dynamics, surface mass balance and glacio-isostatic adjustment (GIA). Net trends can be easily calculated by adding together surface and ice dynamics trends. 20 km gridded datasets have been produced for each process, per year (except the GIA solution which is time-invariant). To convert elevation to mass trends, we also provide the density fields for surface (SMB) and GIA processes used in Martin-Espanol et al (2016). These can be directly multiplied by the dh/dt. To convert dh/dt from ice dynamics, simply multiply by the density of ice. Mass smb = dh/dt smb * d surf Mass ice = dh/dt ice * d ice (not provided) Mass gia = dh/dt gia * d rock NERC grant: NE/I027401/1

  • Digital Elevation Model (DEM) of the Antarctic Ice Sheet derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R) data from the UK TechDemoSat-1 satellite. This is obtained using all available data from the mission (32 months). It has a median bias under 18 metres and Root Mean Square Difference under 91 metres when compared to the CryoSat-2 1 km v1.0 DEM (Slater et al., 2017). This work was supported by the Natural Environmental Research Council [grant number NE/L002531/1]. ***** PLEASE BE ADVISED TO USE VERSION 2.0 DATA ***** The VERSION 2.0 data set (see ''Related Data Set Metadata'' link below) uses improved processing and an additional 13 months of measurements.

  • Point data measurements of ice surface, ice base and lake bed elevation are given from Subglacial Lake Ellsworth (SLE), West Antarctica. The data were acquired during the austral summer of 2007-2008. Five seismic reflection lines were acquired over SLE, with surface elevation determined by dual frequency GPS. Funding was provided by NERC AFI, award numbers NE/D009200/1, NE/D008638/1 and NE/D008751/1. Logistics support: British Antarctic Survey. Equipment support: NERC Geophysical Equipment Facility (loan numbers 838 and 870).

  • A British Antarctic Survey Twin Otter and survey team acquired 8,300 line-km of aerogeophysics data during the Austral summer of 1998/99. Gravity and radio-echo data were acquired simultaneously with the magnetic data at a compromise constant barometric height of 2,200 m, which provides a terrain clearance of 100 m over the highest peaks. Two separate surveys were conducted; one at 5 km line spacing (tie lines at 20 km) over and stretching beyond the southern extent of the Forrestal range (main survey), and one at 2 km line spacing (tie lines at 8 km) covering the Dufek Massif (detailed survey). Ashtech Z12 dual frequency GPS receivers were used for survey navigation. Pseudorange data were supplied to a Picodas PNAV navigation interface computer, which was used to guide the pilot along the pre-planned survey lines. The actual flight path was recovered, using carrier-phase, continuous, kinematic GPS processing techniques. All pseudorange navigation data were recorded at 1 Hz on a Picodas PDAS 1000, PC-based data acquisition system. We present here the processed bed elevation picks from airborne radar depth sounding collected using the BAS PASIN radar system. Data are provided as XYZ ASCII line data.

  • A new subglacial bed Digital Elevation Model (DEM) from Ellsworth Subglacial Highlands (ESH) was created from previously gridded bed elevation data and new unpublished radar data. The new DEM includes the upper reaches of Pine Island Glacier, Rutford and Institute Ice Streams and reveals new topographical features. The main findings on this new DEM are two linear deep throughs with a perpendicular transection valley near Subglacial Lake Ellsworth. Additionally, using the new DEM and ice surface elevation data from CryoSat2 ice surface DEM, a hydropotential model was built and used to create a detailed hydropotential model of ESH to simulate the subglacial hydrological network. This approach allowed us to characterize basal hydrology, subglacial water catchments and connections between them. In this characterization we noticed the mismatch between subglacial hydrological catchment and ice surfaces catchment of Rutford Ice Stream, Pine Island Glacier and Thwaites Glacier. Funding was provided by NERC Antarctic Funding Initiative (AFI) grants NE/D008751/1, NE/D009200/1, and NE/D008638/1, and NERC grant NE/G013071/1.

  • This data set contains bed and surface elevation picks derived from airborne radar collected during the WISE/ISODYN project. This collaborative UK/Italian project collected ~ 61000 line km of new aerogeophysical data during the 2005/2006 austral summer, over the previously poorly surveyed Wilkes subglacial basin, Dome C, George V Land and Northern Victoria Land.