EARTH SCIENCE > Atmosphere > Precipitation > Precipitation Amount

4 record(s)


Type of resources



INSPIRE themes

Contact for the resource

Provided by

Update frequencies

From 1 - 4 / 4
  • Two netcdf files are provided that contain daily precipitation amounts for January 1979 - July 2017 from the RACMO version 3p2 limited area, atmosphere-only model. The model is described in van Wessem, J. M., C. H. Reijmer, M. Morlighem, J. Mouginot, E. Rignot, B. Medley, and E. van Meijgaard, (2014) Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model, Journal of Glaciology, 60, 761-770. The model was run over a 262 by 240 grid point domain covering Antarctica and parts of the Southern Ocean. The model was forced at the lateral boundaries by data from the European Centre for Medium-range Weather Forecasting (ECMWF) Interim reanalysis (ERA-Interim). Flags are provided for extreme precipitation events. A precipitation day was taken as a daily total of precipitation of greater than 0.02 mm. Extreme precipitation events were then taken as days when daily precipitation amount was greater than the 90th percentile of the daily precipitation values over the period 1979 - 2016.

  • High-resolution simulations of daily precipitation over the Beas and Sutlej basins in the Himalaya from 1980 to 2012 were conducted using the Weather Research and Forecasting (WRF) model by the British Antarctic Survey, Cambridge, UK. It was shown that applying a non-linear bias-correction method to the model precipitation output resulted in much better results. The work formed part of the project ''Sustaining Himalayan Water Resources in a Changing Climate (SusHi-Wat)'' during 2015 to 2018, and was funded by the UK Natural Environmental Research Council grant number NE/N015592/1. The datasets produced are necessary as accurate fine-scale estimates of precipitation over catchments in the Himalaya mountain range are required for providing input to hydrological models, as well as identifying precipitation extremes for assessing hydro-meteorological hazards.

  • High-resolution simulation of summer climate over West Antarctica using the Polar-optimised version of the Weather Research and Forecasting (WRF) model conducted at British Antarctic Survey, Cambridge, UK. Runs are conducted for summer (January-centred) 1980-2015, i.e. from December 1979 to February 2015, for December, January and February (DJF). Experiments were carried out for the NERC West Antarctic Grant (NE/K00445X/1) during 2014-2017. The project is aimed at understanding the variability and climatology over the West Antarctic ice sheet and ice shelves as well as to project the future change over the twenty-first century. The model outer domain encompasses the West Antarctic ice sheet and a large part of the surrounding ocean at 45 km horizontal grid spacing, and the nested (one-way) inner domain covers the Amundsen Sea Embayment at 15 km grid spacing. The model uses vertical eta coordinates with both domains have a model top of 50 hPa, and 30 vertical levels.

  • Three micro-power Automatic Weather Stations (AWS) with two sonic ranging sensors were deployed at field-sites situated at Rothschild Island, Latady Island and Smyley Island in January 2005. The AWS instruments included a wind vane and two humicaps on the mast and two sonic ranging sensors mounted on separate horizontal scaffold poles. The AWS data collected contributed to a project concerned with understanding how air mass origin and meteorology affect the mass accumulation of snow in areas of the Antarctic Peninsula, and how the atmosphere''s properties are preserved in the snow.