nonCciKeyword

Droughts

9 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Resolution

Regions

From 1 - 9 / 9
  • Ethiopia experienced severe drought in 2015-16. Many rural communities experienced declines in the performance of their water supply systems. As a result UNICEF commissioned a real-time monitoring and responsive operation and maintenance programme for point source rural water supplies across Central, Northern and Eastern Ethiopia. The water point monitoring survey was coordinated by UNICEF and conducted by World Vision Ethiopia and Oxfam Ethiopia. Data was collected between January and May 2016. Akvo Flow, a mobile survey tool, was used to collect data using questionnaires which were completed by enumerators and uploaded to central servers in near real time. The dataset includes data on functionality, access, usage and water quantity from 5196 rural water points. UNICEF provided the dataset to BGS. BGS reorganised, cleaned, and conducted quality control and analysis of the dataset. A companion paper has been published with more details of the methodology and results of the monitoring survey, https://doi.org/10.1038/s41467-020-14839-3

  • In 1998 the Department for International Development (DFID) funded the project ‘Groundwater drought early warning for vulnerable areas’ as part of the DFID Knowledge and Research (KaR) programme, a collaboration between UK partners BGS and the Overseas Development Institute (ODI), and with the Bureau of Water, Mines and Energy in Amhara Region, Ethiopia. Drawing on village surveys and stakeholder consultations across sectors, this project evolved a broader, more holistic approach to the study of drought and water supply. Rather than focus exclusively on drought and water availability, constraints on household access to and use of water were explored through the lens of water security. This, in turn, highlighted links between the household water economy (across seasons; between good and bad years) and wider livelihood strategies, particularly in relation to inter-dependencies between food and water security.

  • **THIS DATASET HAS BEEN WITHDRAWN** Ethiopia experienced severe drought in 2015-16. Many rural communities experienced declines in the performance of their water supply systems. As a result UNICEF commissioned a real-time monitoring and responsive operation and maintenance programme for point source rural water supplies across Central, Northern and Eastern Ethiopia. The water point monitoring survey was coordinated by UNICEF and conducted by World Vision Ethiopia and Oxfam Ethiopia. Data was collected between January and May 2016. Akvo Flow, a mobile survey tool, was used to collect data using questionnaires which were completed by enumerators and uploaded to central servers in near real time. The dataset includes data on functionality, access, usage and water quantity from 5196 rural water points. UNICEF provided the dataset to BGS. BGS reorganised, cleaned, and conducted quality control and analysis of the dataset. A companion paper has been published with more details of the methodology and results of the monitoring survey, https://doi.org/10.1038/s41467-020-14839-3

  • This dataset is an inventory of reservoir details for the UK. It provides information, including reservoir location, type (impounding or non-impounding), use (water resources, hydro-electric, ecological, flood storage, canal), capacity, planning date, construction date, catchment National River Flow Archive (NRFA) gauge references and membership of a reservoir group, based on current usage within the CEH Monthly Hydrological Summary (https://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk). The dataset comprises 273 individual reservoirs, which amount to approximately 90% of total UK reservoir storage. Data quality has been recorded, using a data flag system and a notes section, with references relevant to each reservoir provided. Full details about this dataset can be found at https://doi.org/10.5285/f5a7d56c-cea0-4f00-b159-c3788a3b2b38

  • 2 examples of Integrated Water Vapour Transport (IVT) maps generated using a new algorithm produced from the work done under the Grant. This algorithm has been published and the article can be found here: http://onlinelibrary.wiley.com/doi/10.1029/2012JD018027/abstract

  • Monthly and daily 5km gridded Potential Evapotranspiration (PET) data for the UK. PET was derived using temperature-based equation from McGuinness-Bordne calibrated for the UK (calibration period: 1961-1990). The units are mm/day for daily PET and mm/month for monthly PET. The dataset covers the period from 1891-2015. For both subsets (daily and monthly), a set of performance metrics were calculated, which are provided together with the PET grids. The list of metrics provided is: Mean Absolute Percent Error (MAPE), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), Correlation Coefficient, Variability Ratio (VR), Bias Ratio and monthly MAPE. Full details about this dataset can be found at https://doi.org/10.5285/17b9c4f7-1c30-4b6f-b2fe-f7780159939c

  • This dataset is a model output created using the BGS AquiMod model. It provides monthly groundwater level relative to the Ordnance Datum (maOD) from 1891 to 2015, reconstructed for 54 observation boreholes across the UK. Based on the Generalised Likelihood Uncertainty Estimation (GLUE) methodology, 90th percentile and 10th percentile confidence bounds have been estimated and are given for each of reconstructed groundwater level time series. Full details about this dataset can be found at https://doi.org/10.5285/ccfded8f-c8dc-4a24-8338-5af94dbfcc16

  • Monthly Standardised Groundwater level Index (SGI) for observation boreholes across the UK from 1891 to 2015, based on reconstructed groundwater level time series (Bloomfield et al., 2018; https://doi.org/10.5285/ccfded8f-c8dc-4a24-8338-5af94dbfcc16). Standardised groundwater levels have been estimated using a non-parametric normal scores transform of groundwater level data for each calendar month. Probability estimates of an SGI being less than 0, -1, -1.5 and -2 are also provided. Full details about this dataset can be found at https://doi.org/10.5285/d92c91ec-2f96-4ab2-8549-37d520dbd5fc

  • This dataset is model output from the GR4J lumped catchment hydrology model. It provides 500 model realisations of daily river flow, in cubic metres per second (cumecs, m3/s), for 303 UK catchments for the period between 1891-2015. The modelled catchments are part of the National River Flow Archive (NRFA) (https://nrfa.ceh.ac.uk/) and provide good spatial coverage across the UK. These flow reconstructions were produced as part of the Research Councils UK (RCUK) funded Historic Droughts and IMPETUS projects, to provide consistent modelled daily flow data across the UK from 1891-2015, with estimates of uncertainty. This dataset is an outcome of the Historic Droughts Project (grant number: NE/L01016X/1). The data are provided in two formats to help the user account for uncertainty: (1) a 500-member ensemble of daily river flow time series for each catchment, with their corresponding model parameters and evaluation metric scores of model performance. (2) a single river flow time series (one corresponding to the top run of the 500), with the maximum and minimum daily limits of the 500 ensemble members. Full details about this dataset can be found at https://doi.org/10.5285/f710bed1-e564-47bf-b82c-4c2a2fe2810e