nonCciKeyword

Chlorophyll pigment concentrations in water bodies

409 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Update frequencies

From 1 - 10 / 409
  • The dataset comprises chlorophyll-a concentrations from water samples taken during RRS James Clark Ross cruise JR304, from 15/11/2014 - 17/12/2014. The cruise sailed from Punta Arenas, Chile, returning to Stanley, Falkland Islands. Samples were taken during transit to Signy Island (South Orkneys), and then up through the Scotia Sea to BAS survey sites P2 and P3 as well as near South Georgia and in the Western Core Box survey area to the north of the island of South Georgia. 112 samples were collected from the ship’s uncontaminated underway supply, with an intake at approximately 6 m depth, every two hours during transit periods. 103 samples were collected, using a rosette sampler, from the upper 1000m during CTD (conductivity, temperature and depth probe) deployments. Each 300ml sample was filtered through a 0.8µm pore size, 25mm diameter, MPF300 filter, rinsed with milliQ water, placed in an eppendorf tube and stored at -20°C for later analysis. Samples were extracted in 90 % acetone for 22-24 hours at 4°C and measured on a Trilogy Turner Designs 7200 lab fluorometer calibrated with a pure chlorophyll-a standard (Sigma, UK) and set up following the method of Welschmeyer (1994). Data have not been adjusted for blanks. The data set was from the annual Western Core Box Cruise run by British Antarctic Survey (BAS). Data were collected to support the PhD of Anna Belcher and provide seasonal context for the cruise in terms of the primary production in the surface ocean. Chlorophyll samples were taken by Jenny Thomas (BAS), Gabi Stowasser (BAS), Sophie Fielding(BAS), Vicky Peck (BAS), Jess Gardner (University of East Anglia and BAS), Cecilia Liszka (BAS), Manon Duret (National Oceanography Centre, NOC), Anna Belcher (NOC), Anna Mikis (Cardiff University) , Marianne Wootton (Sir Alistair Hardy Foundation for Ocean Science), Sebastien Floter (GEOMAR Kiel). Chlorophyll samples were analysed aboard the R.R.S. James Clark Ross by Manon Duret and Anna Belcher from NOC.

  • The dataset comprises chlorophyll-a concentrations from water samples taken during RRS James Clark Ross cruise JR291, from 12/11/2013 - 19/12/2013. The cruise sailed from Stanley, Falklands, and returned to the same port. Samples were taken during transit to Signy Island (South Orkneys), and then up through the Scotia Sea to BAS survey sites P2 and P3 as well as near South Georgia and in the Western Core Box survey area to the north of the island of South Georgia. 170 samples were collected from the ship’s uncontaminated underway supply, with an intake at approximately 6.5 m depth, every two hours during transit periods. 74 samples were collected, using a rosette sampler, from the upper 1000m during CTD (conductivity, temperature and depth probe) deployments. Each 300ml sample was filtered through a 0.8µm pore size, 25mm diameter, MPF300 filter, rinsed with Milli-Q water, placed in an Eppendorf tube and stored at -20°C for later analysis. Samples were extracted in 90 % acetone for 22-24 hours at 4°C and measured on a Trilogy Turner Designs 7200 lab fluorometer calibrated with a pure chlorophyll-a standard (Sigma, UK) and set up following the method of Welschmeyer (1994). Data have not been adjusted for blanks. The data set was from the annual Western Core Box Cruise run by British Antarctic Survey (BAS). Data were collected to support the PhD of Anna Belcher and provide seasonal context for the cruise in terms of the primary production in the surface ocean. Chlorophyll samples were collected by Elena Ceballos-Romero (University of Sevilla), Frédéric Le Moigne (NOC) and Anna Belcher (NOC). Chlorophyll samples were analysed at the National Oceanography centre in Southampton by Anna Belcher from NOC.

  • The data set includes Sea Rover undulating oceanographic recorder data, including temperature, salinity and chlorophyll profiles. The data were collected in the North Atlantic during the 1980s. Data collection was undertaken along numerous sections between 1981 and 1987, as follows: 1981 - 5 sections and polar front box survey; 1983 - 5 sections and polar front box survey; 1984 - 6 sections; 1985 - 3 sections; 1986 - 4 sections; 1987 - 2 sections. The sections vary in length between 500 and 1000 miles and the data includes a number of repeated traverses between the Azores and the Ocean Weather Ship at Station 'Charlie'. The data were collected by the Institut fur Meereskunde, Kiel and have been assembled by the British Oceanographic Data Centre.

  • The Scottish Environment Protection Agency (SEPA) Marine National Environmental Monitoring Buoy Network provides real time, high frequency environmental data from strategic locations around the Scottish coast, as part of SEPA obligations to monitor the marine environment. The monitoring buoy network has been in place in some places from as early as 1996 with more buoys being deployed for ongoing measurements of the marine environment. Continuous monitoring equipment gathers dissolved oxygen, water temperature, salinity and chlorophyll-a data at regular intervals. The data is stored internally and downloaded at regular maintenance intervals. Data is collected by SEPA from monitoring buoys, mostly every 15 minutes. The data was submitted to the British Oceanographic Data Centre (BODC) for "data banking." Data has been removed as part of the SEPA quality control procedure leading to periods of absent data. This also occurs through power failure or lack of deployment. Further quality control by BODC will flag suspect data. The data is used to assess the state of the marine environment at representative locations. Salinity is used to indicate changes in water masses. Salinity decreases as freshwater inputs increase and oxygen is more soluble in freshwater than seawater. Water temperature is closely linked to seasonal changes and oxygen becomes less soluble as the water temperature increases. Chlorophyll-a is an indicator of the biomass of phytoplankton. Phytoplankton blooms are common occurrences at the start and end of the growing season in spring and autumn however excessive phytoplankton is indicated by enhanced abundance throughout the growing season (90 percentile concentration >15 µg/l measured from April to September). Excessive phytoplankton growth may cause an undesirable disturbance to the ecosystem if the decaying algae remove oxygen from the water column and sea bed as a result of microbial breakdown. Dissolved oxygen is one of the most important indicators of the health of a water body and high levels are needed to support a variety of marine life. Dissolved oxygen concentrations are affected by salinity, temperature and phytoplankton growth. Dissolved oxygen produced by photosynthesis may result in supersaturation (>100%) during the growing season. Dissolved oxygen is removed by the microbial breakdown of organic matter.

  • This dataset consists of near real-time ocean observations from an autonomous underwater glider, sampling at the Joint North Sea Information System (JONSIS) hydrographic section (2.23°W to 0° at 59.28°N) between 12th October and 2nd December 2013. The measurements were made by a Seaglider (serial number 502) and consist of full-depth temperature, salinity, oxygen, chlorophyll and optical backscatter observations. Dive-average current observations were also collected. This dataset contains standard raw NetCDF (.nc), engineering (.eng) and log (.log) files captured using Seaglider base station version V2.05. The glider deployment was a collaborative effort between the University of East Anglia (UEA) and Marine Scotland Science. Deployment took place from Research Ship MRV Scotia, whilst recovery utilised MPV Jura. The JONSIS repeat section crosses the path of the Fair Isle Current and the East Shetland Atlantic Inflows, key routes by which Atlantic water enters the northern North Sea.

  • This document describes CTD data collected on three cruises undertaken within the Dogger Bay Bank between August and November 2004, the RV Endeavour 12/04 (September 30 – October 10), 13/04 (August 31 – September 04) and 14/04 (October 22 – November 01). Ship-deployed CTDs were used to collect data at stations throughout each of the cruises. The cruises formed the research component of CEFAS project A1225 – North Sea Dogger Bank. This project is aimed at achieving a better understanding of the dynamics of the circulation processes of the seas around the UK, in order to characterise the extent and nature of density driven and seasonal jet-like circulation which acts as a direct and rapid pathway for transport of material. This project was conducted by the Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft Laboratory, led by Dr. Stephen Dye. The CTD data have been received by BODC as raw files from the RV Endeavour, processed and quality controlled using in-house BODC procedures and are available online to download from the BODC website.

  • This dataset comprises physical, chemical and biological oceanographic measurements collected from the Mid-Atlantic Ridge as part of the UK’s ‘RidgeMix’ project between 2015 and 2016. Physical measurements include water column profiles of temperature, conductivity, current speed/direction and turbulence. These are supplemented by i) chemical samples targeting inorganic nutrients, oxygen and isotopes of radium/nitrate ii) biological samples to understand plankton distribution and to determine chlorophyll and enzyme concentrations. Samples were collected from the water column above the Mid-Atlantic Ridge, between latitudes of approximately 23 and 39 Degrees North. Sampling commenced in September 2015 with the deployment of moored sensors (thermistors, MicroCATs and ADCPs). This was followed up with a dedicated research cruise (JR15-007) between May and July 2016. During this cruise standard observational measurements were undertaken (including CTD, LADCP, SADCP and discrete water sampling), together with more specialised data collection activities (including deployment of turbulence profilers, standalone pumps, zooplankton nets, ocean gliders and a drifting wirewalker mooring). The cruise was also used to recover the moored instruments deployed the previous year. RidgeMix aims to investigate the mixing from internal tides over ridges and seamounts and the biogeochemical implications of this. The project is funded by a Responsive Mode grant from the UK’s Natural Environment Research Council (NERC) and runs from 2014 until 2019. RidgeMix is led by Professor Jonathan Sharples from the University of Liverpool, in collaboration with Principal Investigators from the National Oceanography Centre (Dr Matthew Palmer) and University of Southampton (Professor Alberto Naveira Garabato). This dataset collection brings together the observational component of RidgeMix. Users are advised to contact Principal Investigators for access to associated ocean modelling output from the project. Assembly of the observational dataset is still ongoing with BODC currently holding CTD and discrete sample data (chlorophyll and dissolved inorganic nutrients).

  • The dataset comprises 12 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from across the North Sea area, specifically off Aberdeen, and at the routine Stonehaven monitoring site. The data were collected during September and October of 2008. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the Fisheries Research Services Aberdeen Marine Laboratory.

  • The dataset comprises 92 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from all across the North Sea area, during August of 2008. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the Fisheries Research Services Aberdeen Marine Laboratory.

  • The dataset comprises 86 hydrographic data profiles, collected by a conductivity-temperature-depth (CTD) sensor package, from all across the North Sea area during July and August of 2006. A complete list of all data parameters are described by the SeaDataNet Parameter Discovery Vocabulary (PDV) keywords assigned in this metadata record. The data were collected by the Fisheries Research Services Aberdeen Marine Laboratory.