nonCciKeyword

Carbon capture and storage

306 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Update frequencies

Scale

From 1 - 10 / 306
  • UKCCSRC Call 1 Project (C1-27) - 'Experimental investigation with PACT facility and CFD modelling of oxy-coal combustion on recycling real flue gas and vent gas of compression and purification units' - Methodologies and Data

  • This report describes the results of Task 5.1 in SACS2 Work Area 5 (Geophysics). The aim of the Task is to evaluate the applicability of microgravity surveys as a means of monitoring the future subsurface distribution and migration of the Sleipner CO2 bubble. The report can be downloaded from http://nora.nerc.ac.uk/511457/.

  • The aim of this project is to develop validated and computationally efficient shelter and escape models describing the consequences of a carbon dioxide (CO2) release from Carbon Capture and Storage (CCS) transport infrastructure to the surrounding population. The models will allow pipeline operators, regulators and standard setters to make informed and appropriate decisions regarding pipeline safety and emergency response. The primary objectives planned to achieve this aim are: 1.To produce an indoor shelter model, based on ventilation and air change theory, which will account for both wind and buoyancy driven CO2 ventilation into a building. The model will be capable of incorporating varying cloud heights, internal building divisions, internal and external temperature differences and impurities. 2.To create an external escape model that will determine the dosage received by an individual exposed to a cloud of CO2 outdoors. The model will be capable of incorporating multi-decision making by the individual in terms of the direction and speed of running, wind direction, the time taken to find shelter and the time required to make a decision, on becoming aware of the release. 3.To build a Computational Fluid Dynamics (CFD) model describing the effects of ingress of a CO2 cloud into a multicompartment building. 4.To validate the indoor shelter model and the CFD model against experimental test data for a CO2 release into a single compartment building. 5.To validate the indoor shelter model against further CO2 ingress scenarios modelled with CFD. 6.To conduct a sensitivity study using the shelter and escape models to calculate the dosage that an individual will be expected to receive under different conditions building height, window area, wind direction, temperature gradient, wind speed, atmospheric conditions, building size, running speed, direction of travel and reaction time. 7.To illustrate how the output from the models, in terms of dosage, can be used as input to Quantitative Risk Assessment (QRA) studies to determine safe distances between CO2 pipelines and population centres. 8.To demonstrate how the output from the models, in terms of dosage, can be used as input to the development of emergency response plans regarding the protection afforded by shelter and the likely concentrations remaining in a shelter after release. 9.To disseminate the findings of the research to relevant stakeholders through publication of academic journal papers as well as presentations at conferences, UKCCSRC meetings and relevant specialist workshops. Grant number: UKCCSRC-C2-179.

  • This work is focused on results from a recent controlled sub-seabed in situ carbon dioxide (CO2) release experiment carried out during May–October 2012 in Ardmucknish Bay on the Scottish west coast. Three types of pCO2 sensors (fluorescence, NDIR and ISFET-based technologies) were used in combination with multiparameter instruments measuring oxygen, temperature, salinity and currents in the water column at the epicentre of release and further away. It was shown that distribution of seafloor CO2 emissions features high spatial and temporal heterogeneity. The highest pCO2 values (~1250 µatm) were detected at low tide around a bubble stream and within centimetres distance from the seafloor. Further up in the water column, 30-100 cm above the seabed, the gradients decreased, but continued to indicate elevated pCO2 at the epicentre of release throughout the injection campaign with the peak values between 400 and 740 µatm. High-frequency parallel measurements from two instruments placed within 1 m from each other, relocation of one of the instruments at the release site and 2D horizontal mapping of the release and control sites confirmed a localized impact from CO2 emissions. Observed effects on the water column were temporary and post-injection recovery took <7 days. A multivariate statistical approach was used to recognize the periods when the system was dominated by natural forcing with strong correlation between variation in pCO2 and O2, and when it was influenced by purposefully released CO2. Use of a hydrodynamic circulation model, calibrated with in situ data, was crucial to establishing background conditions in this complex and dynamic shallow water system. This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Dariia Atamanchuk et. al. Doi:10.1016/j.ijggc.2014.10.021.

  • This presentation on the UKCCSRC Call 1 project, Oxyfuel and EGR Processes in GT Combustion, was presented at the Cardiff Biannual, 11.09.15. Grant number: UKCCSRC-C1-26.

  • This Microsoft Excel document contains 5 worksheets providing data produced by research as part of UKCCSRC Call 1 funded project (grant number UKCCSRC-C1-31) and UKCCSRC funded international exchange. These data are presented and discussed in the manuscript "Geochemical tracers for monitoring offshore CO2 stores" by J. Roberts, S. Gilfillan, L. Stalker, M. Naylor, https://doi.org/10.1016/j.ijggc.2017.07.021. Then data details the assumptions around background concentrations of chemical tracers in the atmosphere and seawater, cost per litre, and how tracer detection concentrations (and so cost and potential environmental impact were calculated).

  • Full proposal for scientific drilling (852-CPP) 'GlaciStore: Understanding Late Cenozoic glaciation and basin processes for the development of secure large-scale offshore CO2 storage (North Sea)', submitted to Integrated Ocean Discovery Programme (IODP) April 2014. The proponent 'GlaciStore' consortium comprises research and industry organisations from the UK and Norway. The full proposal describes the relationship of the proposed research with the IODP science plan, regional background and previous work, and describes and illustrates three scientific objectives. The objectives are to investigate: glacial history and sedimentary architecture: fluid flow and microbial processes in shallow sediments; and the stress history and geomechanical models for strata that have experienced multiple glacial and interglacial cycles. The drilling and sampling strategy, standard drilling and logging operations, and the specialist measurements expected to be taken are described. Related initiatives and wider context of the proposed research also the initial and planned strategy for support from industry and government are outlined. The lead submitter, on behalf to the GlaciStore consortium is Heather Stewart, British Geological Survey (BGS).The 30 proponents from the UK and Norway (BGS, Institute for Energy Technology, Lundin Norway AS, SINTEF Energy Research, Statoil ASA, University of Bergen, University of Edinburgh and University of Oslo) and their expertise are listed. The full proposal is a pdf format file. This is restricted to the proponents for publication and to progress to a revised full proposal accepted for drilling by IODP. UKCCSRC Grant UKCCSRC-C1-30.

  • The underground disposal of industrial quantities of CO2 is entirely feasible. Cost is the main barrier to implementation. The preferred concept is disposal into porous and permeable reservoirs capped by a low permeability seal, ideally, but not necessarily, at depths of around 800 metres or more, where the CO2 will be in a dense phase. New concepts and refined reservoir models are continually emerging. As more regional estimates are carried out it appears that there will be ample underground storage capacity in the worlds sedimentary basins. Storage will be stable over geological timescales. The (remote) possibility of an escape of CO2 from a storage reservoir onshore merits further investigation and modelling. It would be highly desirable to learn as much as possible from the operators of the new CO2 disposal schemes arising from natural gas processing in offshore gas fields, as few such opportunities may arise. doi:10.1016/S0196-8904(96)00268-3. http://www.sciencedirect.com/science/article/pii/S0196890496002683

  • The dataset contains 15 plots and data for time-dependent pressures and temperatures at various locations along a 2582-m-long well and at various simulation times. The realistic scenarios taken into considerations are applied to the Goldeneye depleted reservoir in the North Sea. Pure CO2 is injected into the well and then discharged in the Goldeneye reservoir. Six different scenarios are considered: three different injection durations (linear ramp-up of the inlet mass flow rate from 0 to 33.5 kg/s over 5 minutes, 30 minutes, and 2 hours) and two different upstream temperatures (278.15 K and 283.15 K). Data is currently restricted until publication.

  • This presentation on the UKCCSRC Call 1 project, Flexible CCS Network Development, was presented at the Workshop1ES, 30.04.14. Grant number: UKCCSRC-C1-40.