nonCciKeyword

Bathymetry

22 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Years

Formats

Representation types

Update frequencies

Scale

Resolution

Regions

From 1 - 10 / 22
  • Scanned geophysical records, reports and track charts from Tarmac (previously Lafarge Tarmac) aggregate industry marine surveys 1989 to 2004. The geophysical records include boomer seismic and side scan sonar data of varying quality. All records from 44 boxes of paper records have been scanned at BGS and are delivered online along with any additional digital file such as reports or data files. The data are stored as part of the National Geoscience Data Centre (NGDC) and the Marine Environmental Data and Information Network (MEDIN) Data Archive Centre (DAC) for Geology and Geophysics.

  • Data from Marine Conservation Zone (MCZ) surveys are archived in the MEDIN Data Archive Centre (DAC) for Geology and Geophysics at the British Geological Survey. This includes geology (Particle Size Analysis) data and multibeam backscatter data. Data are delivered via the BGS Offshore GeoIndex. Additional data are available on request enquiries@bgs.ac.uk. Other data types are archived with the other MEDIN DACs as appropriate (UKHO DAC for bathymetry data and DASSH DAC for biological data). https://www.gov.uk/government/collections/marine-conservation-zone-designations-in-england.

  • This dataset contains data from a river multibeam and seismic survey which took place in 2013 and 2014 at scour sites within the Brahmaputra river basin in Bangladesh. The survey was carried out as part of a joint project between the Universities of Birmingham, Southampton and Exeter. "The sedimentology of fluvial megascours" was a scientific research project funded by NERC. The purpose was to collect the data necessary to validate the first generic numerical model of scour zone stratigraphy that will be widely applicable to a broad range of large rivers. River bed bathymetry data were collected using a multibeam echosounder. Sub bottom seismic profiling data were collected using a surface tow boomer and chirp system. Technical details of the survey are contained in the cruise report of the survey which comprises part of the metadata. Some of the data has been accepted for a publication in the journal 'Sedimentology' which will be published in 2018 with the title 'The Sedimentology of channel confluences'.

  • This dataset contains numerical model output of a morphodynamic and sedimentological simulation of a large river confluence based loosely on the Jamuna-Ganges junction in Bangladesh. The work was carried out as part of a joint project between the Universities of Birmingham, Southampton and Exeter. "The sedimentology of fluvial megascours" was a scientific research project funded by NERC. One aspect of the project was to undertake numerical simulations (the data described here) with which to compare with river bed bathymetry data (collected using a multibeam echosounder) and sub bottom seismic profiling data (collected using a surface tow boomer and chirp system). The data has been accepted for a publication in the journal 'Sedimentology' which will be published in 2018 with the title 'The Sedimentology of channel confluences'.

  • The British Geological Survey (BGS) holds an archive of multibeam backscatter data from BGS, Maritime & Coastguard Agency (MCA) and other organisations. The data are stored within the National Geoscience Data Centre (NGDC) and the Marine Environmental Data and Information Network (MEDIN) Data Archive Centre (DAC) for Geology and Geophysics. BGS works with the partner DAC for bathymetry at the United Kingdom Hydrographic Office (UKHO) to archive backscatter data. The majority of the data were collected and processed for the Maritime and Coastguard Agency (MCA) under the Civil Hydrography Programme (CHP). Backscatter data is useful for seabed characterisation for geological and habitat mapping. View the backscatter image layer and download backscatter data (geotiff) via the BGS Offshore GeoIndex www.bgs.ac.uk/GeoIndex/offshore.htm. The data underlying the images are available on request enquiries@bgs.ac.uk. If further backscatter processing is required, BGS can provide a quote. View and download the related bathymetry data via the UKHO INSPIRE portal https://www.gov.uk/guidance/inspire-portal-and-medin-bathymetry-data-archive-centre.

  • In 2016, a series of ice shelf cavity bathymetry point measurements were made across Larsen C Ice Shelf, West Antarctica. The sites were selected to address deficiencies in the coverage provided by existing data sets. A hammer and plate seismic source was used. Seismic reflection data were recorded on 24 receivers at 10 m interval and 30 m offset. Sea bed reflections are observed at all sites. Surface elevation measurements are provided to allow estimation of ice thickness when an ice base reflection is not visible. Funded as part of the Polar Science for Planet Earth Programme, British Antarctic Survey, Natural Environment Research Council.

  • This data set contains a bed topography/bathymetric map of Greenland based on mass conservation, multi-beam data, and other techniques. The data set also includes surface elevation, ice thickness and an ice/ocean/land mask. Version 3 includes ocean bathymetry all around Greenland based on data from NASA''s Ocean Melting Greenland (OMG) and other campaigns of bathymetry measurements. The subglacial bed topography has also been updated by including more ice thickness data and constraining the ice thickness at the ice/ocean interface based on bathymetry data when available. Greenland''s bed topography is a primary control on ice flow, grounding line migration, calving dynamics and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic Water (AW) that rapidly melts and undercuts Greenland''s marine-terminating glaciers. This data set presents a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation (MC) approach. A new 150-m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous datasets, particularly in the marine-terminating sectors of northwest and southeast Greenland. The map reveals the total sea level potential of the Greenland Ice Sheet is 7.42+/-0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing. Funding was provided by the UK NERC grant NE/M000869/1.

  • This data are derived from single point seismic data collected across the Filchner-Ronne Ice Shelf. The seismic data were collected over the course of three seasons by a number of field parties, consisting of two main surveys between the 15/16 and 16/17 austral summers and several smaller surveys, as part of a joint initiative between the British Antarctic Survey (BAS) and the Alfred-Wegener-Institute (AWI) in the framework of the "Filchner Ice Shelf System" (FISS) and the "Filchner Ice Shelf Project" (FISP). A total of 256 point seismic measurements were made, of which 248 had clearly visible reflectors and were deemed usable. Each data point consists of a location, together with measurements of ice thickness and water column thickness. These data were collected as part of the FISS NERC large grant, project number NE/L013770/1.

  • We present a new bathymetric compilation around Ascension Island here defined by the following bounding box: 14.57 to 14.17 W, 8.12 to 7.75 S. This bathymetry grid was compiled from a variety of multibeam swath bathymetry data acquired during 4 different cruises (see lineage). The data is available as a grid of approximately 50 m resolution in two different formats: a GMT-compatible (2-D) NetCDF and Arc/Info and ArcView ASCII grid format using geographic coordinates on the WGS84 datum. Funding was provided by NERC grants NE/J023051/1 and NE/J020303/1

  • We present a new bathymetric compilation of the South Shetland Islands here defined by the following bounding box: 63 to 53.3 W, 63.5 to 60.5 S. This bathymetry grid was compiled from a variety of multibeam swath bathymetry data acquired during 76 different cruises (see lineage). The data is available as a grid of approximately 100 m resolution in two different formats: a GMT-compatible (2-D) NetCDF and Arc/Info and ArcView ASCII grid format using geographic coordinates on the WGS84 datum.