nonCciKeyword

Antarctic Ice Sheet

6 record(s)

 

Type of resources

Keywords

Topics

INSPIRE themes

Contact for the resource

Provided by

Update frequencies

Regions

GEMET keywords

From 1 - 6 / 6
  • The Antarctic mass trends have been collated from a combination of different remote sensing datasets. These are trends of yearly elevation changes over Antarctica for the period 2003-2013 due to the different geophysical processes driving changes in Antarctica: ice dynamics, surface mass balance and glacio-isostatic adjustment (GIA). Net trends can be easily calculated by adding together surface and ice dynamics trends. 20 km gridded datasets have been produced for each process, per year (except the GIA solution which is time-invariant). To convert elevation to mass trends, we also provide the density fields for surface (SMB) and GIA processes used in Martin-Espanol et al (2016). These can be directly multiplied by the dh/dt. To convert dh/dt from ice dynamics, simply multiply by the density of ice. Mass smb = dh/dt smb * d surf Mass ice = dh/dt ice * d ice (not provided) Mass gia = dh/dt gia * d rock NERC grant: NE/I027401/1

  • Digital Elevation Model (DEM) of the Antarctic Ice Sheet derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R) data from the UK TechDemoSat-1 satellite. This is obtained using all available data from the mission (32 months). It has a median bias under 18 metres and Root Mean Square Difference under 91 metres when compared to the CryoSat-2 1 km v1.0 DEM (Slater et al., 2017). This work was supported by the Natural Environmental Research Council [grant number NE/L002531/1]. ***** PLEASE BE ADVISED TO USE VERSION 2.0 DATA ***** The VERSION 2.0 data set (see ''Related Data Set Metadata'' link below) uses improved processing and an additional 13 months of measurements.

  • These files are gridded topography, rates of surface elevation change, and errors as 500m and 1km posting determined from surface elevation measured by swath processing of data acquired by the interferometric radar altimeter CryoSat-2. The gridded products cover the Antarctic Ice Sheet between 2011 and 2016. These data have been processed by the University of Edinburgh and are made publicly available as part of a European Space Agency funded project involving the University of Edinburgh, isardSat UK, University of Leeds-CPOM, ENVEO. Gridded elevation and elevation change over the CryoSat-2 LRM sector of the Antarctic Ice Sheet are provided by CPOM.

  • These files are surface elevation determined from swath processing of data acquired by the interferometric radar altimeter CryoSat-2. The data have been collected and processed over the Antarctic Ice Sheet between 2011 and 2016. These data have been processed by the University of Edinburgh and are made publicly available as part of the European Space Agency funded project CryoTop and CryoTop Evolution involving the University of Edinburgh, isardSat UK, University of Leeds-CPOM, ENVEO.

  • Improved Digital Elevation Model (DEM) of the Antarctic Ice Sheet derived from Global Navigation Satellite Systems-Reflectometry (GNSS-R). This builds on a previous study (Cartwright et al., 2018) using GNSS-R to derive an Antarctic DEM but uses improved processing and an additional 13 months of measurements. A median bias of under 10 m and root-mean-square (RMS) errors of under 53 m are obtained, as compared to existing DEMs. Funding was provided by NERC grant NE/L002531/1.

  • We present steady-state ice thickness, bed elevation, and ice surface elevation output from simulations of the Antarctic Ice Sheet (AIS) on a suite of reconstructed Antarctic palaeotopographies using the DeConto and Pollard (DP16) ice sheet model. Ice surface mass balance inputs were provided using the GENESIS v3.0 global atmosphere general circulation model coupled to a 50 m slab ocean model, which provides boundary meteorology for the RegCM3 regional climate model. Three climate/ocean scenarios were simulated: (1) cold climate orbital parameters, preindustrial CO2 levels (280 ppm) and modern ocean temperatures, (2) a subsequent shift to warm climate orbital parameters, an increase in CO2 levels to 500 ppm, and a 5 deg C ocean temperature rise, and (3) as for (2), but with CO2 levels increased to 840 ppm. The steady-state simulations were performed on a suite of reconstructed Antarctic palaeotopographies pertaining to the following four time slices: (1) the Eocene-Oligocene boundary (EOB; ca. 34 Ma), (2) the Oligocene-Miocene boundary (OMB, ca. 23 Ma), (3) the mid-Miocene (MM; ca. 14 Ma), and (4) the mid-Pliocene (MP; ca. 3.5 Ma). Simulations were performed for minimum, median, and maximum end-member topographies, and equivalent simulations were run on the modern (ice-free) Antarctic bed topography for comparison. Further details are given in the accompanying publication. For more information, please contact G. Paxman. Funding was provided by NERC Ph.D. studentship NE/L002590/1.