From 1 - 10 / 16
  • Data from the operational NWP (Numerical Weather Prediction) output from the Variable resolution UK (UKV) part of the Met Office Unified Model. This latest configuration of the UM model has a high resolution inner domain (1.5 km grid boxes) over the area of forecast interest, separated from a coarser grid (4 km) near the boundaries by a variable resolution transition zone. This variable resolution approach allows the boundaries to be moved further away from the region of interest, reducing unwanted boundary effects on the forecasts. The UKV model is kept close to observations using 3D-Var data assimilation every 3 hours. This archive is currently being populated at the BADC.

  • Data from the operational NWP (Numerical Weather Prediction) output from the Variable resolution UK (UKV) part of the Met Office Unified Model. This latest configuration of the UM model has a high resolution inner domain (1.5 km grid boxes) over the area of forecast interest, separated from a coarser grid (4 km) near the boundaries by a variable resolution transition zone. This variable resolution approach allows the boundaries to be moved further away from the region of interest, reducing unwanted boundary effects on the forecasts. The UKV model is kept close to observations using 3D-Var data assimilation every 3 hours. This archive is currently being populated at the BADC.

  • Data from the operational NWP (Numerical Weather Prediction) output from the Variable resolution UK (UKV) part of the Met Office Unified Model. This latest configuration of the UM model has a high resolution inner domain (1.5 km grid boxes) over the area of forecast interest, separated from a coarser grid (4 km) near the boundaries by a variable resolution transition zone. This variable resolution approach allows the boundaries to be moved further away from the region of interest, reducing unwanted boundary effects on the forecasts. The UKV model is kept close to observations using 3D-Var data assimilation every 3 hours. This archive is currently being populated at the BADC.

  • Data from the operational NWP (Numerical Weather Prediction) output from the Variable resolution UK (UKV) part of the Met Office Unified Model. This latest configuration of the UM model has a high resolution inner domain (1.5 km grid boxes) over the area of forecast interest, separated from a coarser grid (4 km) near the boundaries by a variable resolution transition zone. This variable resolution approach allows the boundaries to be moved further away from the region of interest, reducing unwanted boundary effects on the forecasts. The UKV model is kept close to observations using 3D-Var data assimilation every 3 hours. This archive is currently being populated at the BADC.

  • Data from the operational NWP (Numerical Weather Prediction) output from the Variable resolution UK (UKV) part of the Met Office Unified Model. This latest configuration of the UM model has a high resolution inner domain (1.5 km grid boxes) over the area of forecast interest, separated from a coarser grid (4 km) near the boundaries by a variable resolution transition zone. This variable resolution approach allows the boundaries to be moved further away from the region of interest, reducing unwanted boundary effects on the forecasts. The UKV model is kept close to observations using 3D-Var data assimilation every 3 hours. This archive is currently being populated at the BADC.

  • This dataset collection contain data concerning stratospheric temperature, geopotential height and wind components produced by the Stratospheric Data Assimilation System at the UK Met Office. The data assimilation system is a development of the scheme used at the Met Office for operational weather forecasting, which has been extended to cover the stratosphere. The primary product is a daily analysis (at 1200 UTC) which is produced using operational observations only. For short periods of particular interest the analyses are available at 6-hourly intervals. Assimilation experiments using UARS (Upper Atmosphere Research Satellite) data in addition to operational meteorological observations have been carried out for limited periods. These data consist of 3-dimensional gridpoint analyses of temperature, geopotential height and wind components fields at 2.5 x 3.75 degree resolution from the ground to 0.3 hPa (for the period from 17th October 1991 (UARS day 36) to 2006-03-13) and on a smaller grid size 0.5625 degree x 0.375 degree on 27 (or 26 depending on variable) pressure levels, (note, this does not apply for the UARS versions of the data files), for the period 2006-03-03 to present day.

  • The Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) was based at the NASA Ames Research Centre in California during portions of 1992 and 1993. This dataset contains measurements of meteorological parameters, atmospheric composition, aerosol and cloud plus GOES imagery and TOMS column ozone. The overall data collection consist of measurements collected onboard the NASA ER-2 aircraft, and selected radiosonde soundings from stations in the region of the experiment. Flights were conducted during October and November of 1992, April and May of 1993, and October of 1993. Theory team products come in two forms: as quantities evaluated along flight tracks and as global or hemispheric fields. Meteorological quantities, such as temperature, geopotential, and potential vorticity are available in both forms. They are based on analyses from both the U.S. National Meteorological Center and from the Assimilation Model of NASA's Goddard Space Flight Center. Other quantities, available along flight tracks only, include visible reflectivity, cloud height, UV reflectivity, and total ozone. The first two are derived from GOES imagery, the last two from the Meteor TOMS sensor. Finally, calculations of mixing ratios of selected chemical species using a photochemical steady state model are available along the flight track.

  • The Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) was based at the NASA Ames Research Centre in California during portions of 1992 and 1993. This dataset contains 12 Z hemispheric analyses of potential vorticity, temperature, horizontal winds, and geopotential model data. The overall data collection consist of measurements collected onboard the NASA ER-2 aircraft, and selected radiosonde soundings from stations in the region of the experiment. Flights were conducted during October and November of 1992, April and May of 1993, and October of 1993. Theory team products come in two forms: as quantities evaluated along flight tracks and as global or hemispheric fields. Meteorological quantities, such as temperature, geopotential, and potential vorticity are available in both forms. They are based on analyses from both the U.S. National Meteorological Center and from the Assimilation Model of NASA's Goddard Space Flight Center. Other quantities, available along flight tracks only, include visible reflectivity, cloud height, UV reflectivity, and total ozone. The first two are derived from GOES imagery, the last two from the Meteor TOMS sensor. Finally, calculations of mixing ratios of selected chemical species using a photochemical steady state model are available along the flight track.

  • This dataset collection contains data from the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) which was based at NASA Ames Research Center in California during portions of 1992 and 1993. The data consist of measurements collected onboard the NASA ER-2 aircraft, and selected radiosonde soundings from stations in the region of the experiment. Flights were conducted during October and November of 1992, April and May of 1993, and October of 1993. Theory team products come in two forms: as quantities evaluated along flight tracks and as global or hemispheric fields. Meteorological quantities, such as temperature, geopotential, and potential vorticity are available in both forms. They are based on analyses from both the U.S. National Meteorological Center and from the Assimilation Model of NASA's Goddard Space Flight Center. Other quantities, available along flight tracks only, include visible reflectivity, cloud height, UV reflectivity, and total ozone. The first two are derived from GOES imagery, the last two from the Meteor TOMS sensor. Finally, calculations of mixing ratios of selected chemical species using a photochemical steady state model are available along the flight track.

  • This dataset contains level 2 data products from the Infrared Atmospheric Sounding Interferometer (IASI) instrument on board the Eumetsat EPS Metop-A satellite. IASI was designed to measure the infrared spectrum emitted by the earth. IASI provides infrared soundings of the temperature profiles in the troposphere and lower stratosphere, moisture profiles in the troposphere, as well as some of the chemical components playing a key role in the climate monitoring, global change and atmospheric chemistry.