Keyword

data.gov.uk

6 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 6 / 6
  • Categories  

    The GEBCO Grid is a global terrain model for oceans and land at 30 arc-second intervals which was developed and first released in 2009 by the General Bathymetric Chart of the Oceans (GEBCO) as GEBCO 08. The current release is GEBCO 2014, released in December 2014 and updated in March 2015. GEBCO is an international group of experts who work on the development of a range of bathymetric (accurate mapping of the sea floor) data sets and data products. The bathymetric portion of the grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. Data sets developed by other methods are also included where they improve the grid. The land portion of the grid is largely based on the US Geological Survey's SRMT30 data set, developed with data from the US National Aeronautics and Space Administration (NASA) Shuttle Radar Topographic Mission (SRTM). For the area around Antarctica, the land data are taken from the Bedmap2 data set. The grid is accompanied by a Source Identifier (SID) Grid which identifies which cells in the GEBCO Grid are based on soundings or existing grids and which have been interpolated. The data sets are updated as new bathymetric compilations are made available. Both grids are freely available to download, in netCDF; data GeoTiff and Esri ASCII raster formats, from the web. Free software is available for viewing and accessing data from the grids in netCDF and ASCII data formats. The grids are also included as part of the GEBCO Digital Atlas DVD.

  • Categories  

    The Marine Environment Monitoring and Assessment National database (MERMAN) is a national database which holds and provides access to data collected under the Clean Safe Seas Environmental Monitoring Programme (CSEMP) formerly the National Marine Monitoring Programme (NMMP). The data collected are the responsibility of the Competent Monitoring Authorities (CMAs) who collect the samples from stations in UK waters using water sampling techniques, trawls, nets or grabs. The CMAs then send the collected samples to accredited laboratories where they are analysed. A weighting is calculated, based on the quality of the analysis. The weighting score incorporates the laboratory accreditation, reference material, inter-laboratory comparisons, detection limits, uncertainties and standard deviations. Where data do not meet a threshold score they are given a status of ‘FAIL’ and although they are stored they are not made available to external users. The contaminants and biological effects in biota data start in 1987 with greater use of the database occurring from 1997 onwards. Data are submitted by the CMAs annually and an annual submission may include updates to legacy data to provide additional data or improve data/metadata. The data held in MERMAN fulfils the UK's mandatory monitoring requirements under the Oslo and Paris Convention (OSPAR) Joint Assessments and Monitoring Programme (JAMP). These data are used in support of European Commission (EC) directives and national assessments, such as Charting Progress 2 and are also supplied to the European Marine Observation and Data Network (EMODNET).

  • Categories  

    The cross-disciplinary themes will result in a diverse data catalogue. The ship collected data will be in the form of sea surface meteorology (2-D wind speed and direction, total irradiance, Photosynthetically Active Radiation/PAR, air temperature, atmospheric pressure, humidity); atmospheric carbon dioxide (pCO2); biological, chemical and physical properties and processes in the marine photic zone (carbonate chemistry - pCO2, total alkalinity, pH, DIC; dissolved gases - oxygen; nutrient concentrations, ammonium regeneration, nitrification, nitrogen fixation, zooplankon ecology, chlorophyll concentration, photosynthetic pigment composition, bacterial production, phytoplankton and bacterial speciation, concentrations of biogenic trace compounds such as dimethyl sulphide/DMS and dimthylsulphoniopropionate/DMSP, salinity, temperature, zooplankon ecology) and bioassays of these same parameters under different future IPCC CO2 and temperature scenarios. The long-term (18 month) laboratory based mesocosm experiments will include data on individual organism response (growth, immune response, reproductive fitness) under different future IPCC CO2 and temperature scenarios in rocky intertidal, soft sediment and calcareous biogenic habitats, as well as the effects on commercially important species of fish and shellfish. The analysis of sediment cores will provide greater resolution of the paleo record during the Paleocene-Eocene Thermal Maximum (PETM). Data will be used to aid the parameterisation of coastal and continental shelf seas (Northern Europe and the Arctic) model runs as well as larger scale global models. The shipboard fieldwork will take place around the UK, in the Arctic Ocean and the Southern Ocean. The mesocosms will look at temperate marine species common to UK shelf seas. Sediment cores have been collected from Tanzania. The models will look from the coastal seas of Northern Europe to the whole globe. Data to be generated will include data collected at sea, short-term (2-3 day) ship-board bioassays, from long-term (18 month) laboratory based mesocosm experiments and reconstructed paleo records from sediment cores. The 5 year UK Ocean Acidification Research Programme is the UK’s response to growing concerns over ocean acidification. Aims: 1 - to reduce uncertainties in predictions of carbonate chemistry changes and their effects on marine biogeochemistry, ecosystems and other components of the Earth System; 2 - to understand the responses to ocean acidification, and other climate change related stressors, by marine organisms, biodiversity and ecosystems and to improve understanding of their resistance or susceptibility to acidification; 3 - to provide data and effective advice to policy makers and managers of marine bioresources on the potential size and timescale of risks, to allow for development of appropriate mitigation and adaptation strategies. The study unites over 100 marine scientists from 27 institutions across the UK. It is jointly funded by Department for Environment, Food and Rural Affairs (Defra), the Natural Environment Research Council (NERC) and Department of Energy and Climate Change (DECC).

  • Categories  

    The Marine Environment Monitoring and Assessment National database (MERMAN) is a national database which holds and provides access to data collected under the Clean Safe Seas Environmental Monitoring Programme (CSEMP) formerly the National Marine Monitoring Programme (NMMP). The data collected are the responsibility of the Competent Monitoring Authorities (CMAs) who collect the samples from stations in UK waters using water sampling techniques, trawls, nets or grabs. The CMAs then send the collected samples to accredited laboratories where they are analysed. A weighting is calculated, based on the quality of the analysis. The weighting score incorporates the laboratory accreditation, reference material, inter-laboratory comparisons, detection limits, uncertainties and standard deviations. Where data do not meet a threshold score they are given a status of ‘FAIL’ and although they are stored they are not made available to external users. The MERMAN contaminants, nutrients, biological and eutrophication effects in water data start in 1999. Data are submitted by the CMAs annually and an annual submission may include updates to legacy data to provide additional data or improve data/metadata. The data held in MERMAN fulfils the UK's mandatory monitoring requirements under the Oslo and Paris Convention (OSPAR) Joint Assessments and Monitoring Programme (JAMP). These data are used in support of European Commission (EC) directives and national assessments, such as Charting Progress 2 and are also supplied to the European Marine Observation and Data Network (EMODNET).

  • Categories  

    The Marine Environment Monitoring and Assessment National database (MERMAN) is a national database which holds and provides access to data collected under the Clean Safe Seas Environmental Monitoring Programme (CSEMP) formerly the National Marine Monitoring Programme (NMMP). The data collected are the responsibility of the Competent Monitoring Authorities (CMAs) who collect the samples from stations in UK waters using water sampling techniques, trawls, nets or grabs. The CMAs then send the collected samples to accredited laboratories where they are analysed. A weighting is calculated, based on the quality of the analysis. The weighting score incorporates the laboratory accreditation, reference material, inter-laboratory comparisons, detection limits, uncertainties and standard deviations. Where data do not meet a threshold score they are given a status of ‘FAIL’ and although they are stored they are not made available to external users. The MERMAN contaminants and biological effects in sediment data start in 1987 with greater use of the database occurring from 1997 onwards. Data are submitted by the CMAs annually and an annual submission may include updates to legacy data to provide additional data or improve data/metadata. The data held in MERMAN fulfils the UK's mandatory monitoring requirements under the Oslo and Paris Convention (OSPAR) Joint Assessments and Monitoring Programme (JAMP). These data are used in support of European Commission (EC) directives and national assessments, such as Charting Progress 2 and are also supplied to the European Marine Observation and Data Network (EMODNET).

  • Categories  

    Glider data - temperature, salinity, chlorophyll, CDOM, BBP and dissolved oxygen from the English Channel, collected as part of the CAMPUS (Combining Autonomous observations and Models for Predicting and Understanding Shelf seas) project. The purpose of this dataset was proof of concept for a UK Met Office numerical model for predicting phytoplankton bloom locations and also for assimilation into these models for improved forecasting. This is the delayed-mode data set from the glider (high-resolution data stored on the glider and post processed). The data were processed from binary files using a Matlab toolbox and calibrated where possible using CTD data.