From 1 - 10 / 24
  • This data set consist of a single file which contains a set of optimised global surface fluxes of methane (CH4), produced through variational inverse methods using the TOMCAT chemical transport model, and the INVICAT inverse transport model. These surface fluxes are produced as monthly mean values on the (approximately) 5.6-degree horizontal model grid. The associated uncertainty for the flux from each grid cell is also included. The fluxes and uncertainties are global and cover the period Jan 2010 - Dec 2018. The emissions from fossil fuels are labelled FF_FLUX, whilst the uncertainties are labelled FF_ERROR. The emissions from natural, agricultural and biomass burning sources are labelled NAT_FLUX, whilst the uncertainties are labelled NAT_ERROR. These two sectors (fossil fuel and non-fossil fuel) are solved for separately in the inversion. Flux and uncertainty units are kg(CH4)/m2/s, and time units are days since January 1st 2010. These emissions show improved performance relative to independent observations when included in the TOMCAT model. Further details about the data can be found in Wilson et al. (2020) in the documentation section.

  • QUEST Fish was led by Dr Manuel Barange (PML) with 18 co-investigators from POL, PML, CEFAS, University of Plymouth, University of Portsmouth, CSIC (Spain), UEA, WorldFish Centre, IPSL, ICES (Denmark), Met Office, IRD (Paris) and University of North Carolina, as part of QUEST (Quantifying and Understanding the Earth System). QUEST-Fish specifically focused on the added impacts that climate change is likely to cause on global fish production, and on the subsequent additional risks and vulnerabilities to human societies. This dataset contains global fish biomass estimates from the Global Coastal-Ocean Modelling System.

  • This dataset contains isocyanate, amide, nitrate and nitro compounds measurements from an anthropogenic biomass burning event in Manchester, UK. Measured over an 11 day period in November 2014 using a flight chemical ionisation mass spectrometer (ToF-CIMS). Measurements of NOx and O3 are also included. Data were collected from The Whitworth Meteorological Observatory based at the University of Manchester.

  • Water column acoustic data collected in the Scotia Sea (from 2015-11-13 to 2015-12-14) during cruise JR15002. Multi-frequency (38,120 and 200 kHz) acoustic data were collected using a Simrad EK60 echo sounder. The dataset comprises of calibrated and processed 38 kHz volume backscattering strength (Sv, dB re 1m-1). Data processing was undertaken using Echoview and Matlab. Processed netCDF data files are made available as part of the NERC Southern Ocean Network of Acoustics (SONA) and the EU MESOPP project.

  • Water column acoustic data collected in the Scotia Sea (from 2016-12-09 to 2017-01-15) during cruise JR16003. Multi-frequency (38,120 and 200 kHz) acoustic data were collected using a Simrad EK60 echo sounder. The dataset comprises of calibrated and processed 38 kHz volume backscattering strength (Sv, dB re 1m-1). Data processing was undertaken using Echoview and Matlab. Processed netCDF data files are made available as part of the NERC Southern Ocean Network of Acoustics (SONA) and the EU MESOPP project.

  • Water column acoustic data collected in the Amundsen and Bellingshausen Seas (from 2008-02-26 to 2008-04-10) during cruise JR179. Multi-frequency (38,120 and 200 kHz) acoustic data were collected using a Simrad EK60 echo sounder. The dataset comprises of calibrated and processed 38 kHz volume backscattering strength (Sv, dB re 1m-1). Data processing was undertaken using Echoview and Matlab. Processed netCDF data files are made available as part of the NERC Southern Ocean Network of Acoustics (SONA) and the EU MESOPP project.

  • Water column acoustic data collected in the Scotia Sea (from 2009-12-12 to 2009-12-19) during cruise JR230. Multi-frequency (38,120 and 200 kHz) acoustic data were collected using a Simrad EK60 echo sounder. The dataset comprises of calibrated and processed 38 kHz volume backscattering strength (Sv, dB re 1m-1). Data processing was undertaken using Echoview and Matlab. Processed netCDF data files are made available as part of the NERC Southern Ocean Network of Acoustics (SONA) and the EU MESOPP project.

  • Water column acoustic data collected in the Scotia Sea (from 2016-01-21 to 2016-02-21) during cruise JR15004. Multi-frequency (38,120 and 200 kHz) acoustic data were collected using a Simrad EK60 echo sounder. The dataset comprises of calibrated and processed 38 kHz volume backscattering strength (Sv, dB re 1m-1). Data processing was undertaken using Echoview and Matlab. Processed netCDF data files are made available as part of the NERC Southern Ocean Network of Acoustics (SONA) and the EU MESOPP project.

  • Water column acoustic data collected in the Atlantic Ocean (from 2016-09-26 to 2016-11-03) during cruise JR16001. Multi-frequency (38,120 and 200 kHz) acoustic data were collected using a Simrad EK60 echo sounder. The dataset comprises of calibrated and processed 38 kHz volume backscattering strength (Sv, dB re 1m-1). Data processing was undertaken using Echoview and Matlab. Processed netCDF data files are made available as part of the NERC Southern Ocean Network of Acoustics (SONA) and the EU MESOPP project.

  • Water column acoustic data collected in the Scotia Sea (from 2009-12-23 to 2009-12-30) during cruise JR228. Multi-frequency (38,120 and 200 kHz) acoustic data were collected using a Simrad EK60 echo sounder. The dataset comprises of calibrated and processed 38 kHz volume backscattering strength (Sv, dB re 1m-1). Data processing was undertaken using Echoview and Matlab. Processed netCDF data files are made available as part of the NERC Southern Ocean Network of Acoustics (SONA) and the EU MESOPP project.