From 1 - 2 / 2
  • The QUEST-GSI WP-I5 "Aquatic Ecosystems" project provided an analysis of global fisheries vulnerability across a range of global climate models, emissions scenarios, fixed degree scenarios and alternative impact metrics. This dataset contains model output data from the emission, fixed degree, Cheung potential analysis, Allison socio-economic comparison and freshwater run-off analysis scenarios. -Emission Scenarios- These results are from the analysis using the SRES emissions scenarios from the IPCC AR4 - A1b, A2, B1 and B2. -Fixed Degree- This analysis was driven by the fixed degree rise scenarios, corresponding to a fixed increase in global temperature by 2050. These are 1 to 4 degrees C, in half degree increments, with each fishery impact equally weighted across freshwater, EEZ and High Seas (see report). They are also carried out for a variety of GCMs and socio-economic scenarios. -Cheung Potential Catch Analysis- These results were generated for marine fisheries using an alternative metric to temperature change in calculating potential impact- that of predicted change in potential catch from the study carried out by W.W.L. Cheung et al. (2009 Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology 16, 24-35). This was carried out for the A1b SRES scenario using the GFDL CM2.1 global climate model. -Allison Socio-economic comparison- A comparison study using the adaptive capacity metric developed in Allison et al. (2009 Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10, 173–196). This was undertaken for the A1b Emission Scenario using HadCM3. -Freshwater Runoff Analysis- Using predicted changes in freshwater availability from the outputs of QUEST-GSI WP-I1 global water resources project, an alternative analysis for freshwater fisheries vulnerability was carried out. This was under the 2 degrees fixed increase scenario using HadCM3.

  • This dataset represent hydrological statistics calculated over a 30‐year period, at a spatial resolution (over land) of 0.5x0.5o across the global domain. The simulations were made using the global hydrological model Mac‐PDM.09. The data files represent runoff simulated with the baseline (1961‐1990) climate, together with runoff simulated by climate change scenarios derived from CMIP3 global climate model output (i) based on specific IPCC SRES emissions scenarios (“SRES”) and (ii) scaled to represent prescribed changes in global mean temperature (“PRESC”), and from CMIP5 global climate model output based on RCP scenarios. The simulations were run at the University of Reading between 2009 and 2013. See Gosling & Arnell (2011)mfor a description and validation of Mac‐PDM.09, and Arnell & Gosling (2013) for details of the CMIP3 climate change scenarios and their application to the simulation of river runoff. Arnell & Lloyd‐Hughes (2013) describe the application of the model with CMIP5 scenarios.