Keyword

Species Distribution

51 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
Service types
Resolution
From 1 - 10 / 51
  • This service displays a series of datasets consisting of mean estimate distribution maps of ash trees (Fraxinus excelsior) across Great Britain. It includes ash trees in areas less than half a hectare, ash trees in woody linear features and individual ash trees. The data are derived from Countryside Survey 2007. Trees were mapped in 569 1km sample squares across Britain using a stratified random sampling system based on the ITE Land Classification. Mean national estimates were produced by scaling up from the sample data.

  • Collated indices are a relative measure of butterfly abundance across monitored sites in the UK, calculated from data collected by the UK Butterfly Monitoring Scheme (UKBMS). Collated indices are calculated annually for each individual butterfly species that has been recorded on five or more sites in that year. Based on this criterion collated indices have been calculated for the entire UKBMS time series from 1976 to the current year for the majority of species. For some rarer species the time series starts in a later year due to lack of data. Collated indices are calculated using a statistical model that accounts for missing data. The number of sites for each species ranges from 5 to several hundred and varies from year to year. Since 2008 more than 1,000 sites have been monitored across the UK each year. Collated indices are calculated so that we can determine how butterfly populations are changing over time across the UK. This data can be used, for example, to determine where to target conservation efforts and to measure the condition of the UK countryside. Butterflies are recognised as important indicators of biodiversity and environmental change (e.g. as official UK Biodiversity Indicators), and have been used in numerous research studies to understand the impacts of changes in climate and the extent and condition of habitats. Although the UK Centre for Ecology & Hydrology (UKCEH) and Butterfly Conservation (BC) are responsible for the calculation and interpretation of the Collated indices, the collection of the data used in their creation is ultimately reliant on a large volunteer community. The UKBMS is funded by a consortium of organisations led by the Joint Nature Conservation Committee (JNCC). This dataset is updated annually and more recent versions of the UKBMS collated indices are available. Full details about this dataset can be found at https://doi.org/10.5285/560b320e-7859-449a-b565-f80e369ceb0a

  • This dataset records the Saiga antelope die-off and calving sites in Kazakhstan. It represents the locations (and where available dates) of (i) die-offs and (ii) normal calving events in the Betpak-dala population of the saiga antelope, in which three major mass mortality events have been recorded since 1988. In total, the data contains 214 saiga die-off and calving sites obtained from field visits, aerial surveys, telemetry and literature. Locations derived from field data, aerial surveys or telemetry are polygons representing the actual size and shape of the die-off or calving sites; locations sourced from the literature are point data around which buffers of 6km were created, representing the average size of calving aggregations. Of the 214 locations listed, 135 sites for which environmental data were available were used to model the probability of a die-off event. The collection and use of these data are written up in more detail in papers which are currently under review (when published links will be added to this record). Saiga antelope are susceptible to mass mortality events, the most severe of which tend to be caused by haemorrhagic septicaemia following infection by the bacteria Pasteurella multocida. These die-off events tend to occur in May during calving, when saigas gather in dense aggregations which can be represented spatially as relatively small sites. The Betpak-dala population is one of three in Kazakhstan, located in the central provinces of the country (see map). Full details about this dataset can be found at https://doi.org/10.5285/8ad12782-e939-4834-830a-c89e503a298b

  • This dataset models bee nectar plant richness across Great Britain (GB). It uses counts of bee nectar plants (using a list agreed with experts) in Countryside Survey area vegetation plots in 2007 and extrapolates to 1km squares across GB using a generalised additive mixed model. Co-variables used in the model are Broad Habitat (the dominant broad habitat of the 1km square), air temperature, nitrogen deposition, precipitation and altitude. This data provides a metric of the Natural Capital associated with pollination, although to measure the service itself you would require additional datasets. Understanding the distribution of bee nectar plants does provide valuable information on the potential distribution of pollinators and hence pollination. Full details about this dataset can be found at https://doi.org/10.5285/623a38dd-66e8-42e2-b49f-65a15d63beb5

  • Collated indices are a relative measure of butterfly abundance across monitored sites in the UK, calculated from data collected by the UK Butterfly Monitoring Scheme (UKBMS). Collated indices are calculated annually for each individual butterfly species that has been recorded on five or more sites in that year. Based on this criterion collated indices have been calculated for the entire UKBMS time series from 1976 to the current year for the majority of species. For some rarer species the time series starts in a later year due to lack of data. Collated indices are calculated using a statistical model that accounts for missing data. The number of sites for each species ranges from 5 to several hundred and varies from year to year. Since 2008 more than 1,000 sites have been monitored across the UK each year. Collated indices are calculated so that we can determine how butterfly populations are changing over time across the UK. This data can be used, for example, to determine where to target conservation efforts and to measure the condition of the UK countryside. Butterflies are recognised as important indicators of biodiversity and environmental change (e.g. as official UK Biodiversity Indicators), and have been used in numerous research studies to understand the impacts of changes in climate and the extent and condition of habitats. Although the UK Centre for Ecology & Hydrology (UKCEH) and Butterfly Conservation (BC) are responsible for the calculation and interpretation of the Collated indices, the collection of the data used in their creation is ultimately reliant on a large volunteer community. The UKBMS is funded by a consortium of organisations led by the Joint Nature Conservation Committee (JNCC). This version supersedes the original version due to an error in the precision of the reported figures. This dataset is updated annually and recent versions of the UKBMS collated indices are available. Full details about this dataset can be found at https://doi.org/10.5285/c6c5e93c-06c2-44d5-ab2a-8f6f10951888

  • Records of leaf damage caused by and parasitism of Cameraria ohridella in Britain in 2010 collected with a citizen science approach as part of the Conker Tree Science citizen science project, plus validation of the data. Over 3500 people in Great Britain provided data at a national scale on an invasive insect (horse-chestnut leaf-mining moth, Cameraria ohridella Deschka & Dimic; Lepidoptera: Gracillariidae) in order to address two hypotheses. Specifically: (1) whether the levels of damage caused to leaves of the horse-chestnut tree, Aesculus hippocastanum L., and (2) whether the level of parasitism of C. ohridella larvae were both greatest where C. ohridella had been present the longest Participants recorded leaf damage on an ordinal scale (0-4) during the summer (1st July to 15th October 2010). In order to assess the levels of parasitism of caterpillars of C. orhidella, we invited people to rear insects from horse chestnut leaves infested with C. ohridella. Participants sampled leaves during the first week of July 2010 (i.e. the first of the moth's gererations that year) and stored them in sealed plastic bags for two weeks. We then asked participants to report the number of leaf-mines, and to identify and count the insects in each category: adult C. ohridella moths, parasitoids, and other insects. Anyone could take part in rearing parasitoids, but we particularly focused on school children aged 8-11 by working with a team of eight trained volunteers across the country who directly contacted schools and led lessons in classes. The volunteers did not provide directive guidance during the time that the children were counting adult moths and parasitoids, so the data were not biased by our supervision. At the completion of the activity, we retained a randomly-selected subset of 669 samples that the children had counted. We also retained an additional 75 samples in which children had reported parasitoids. For all of these samples an expert blindly assessed the counts of leaf mines, adult C. ohridella moths and other insects. In order to assess how many years that C. orhidella had been present in a location, we used a long-term dataset collated by Forest Research (used with permission). These data showed under-sampling of the range of C. orhidella after 2006, so we also modeled the predicted arrival of C. orhidella based on a demographic model of spread parameterised in continental Europe by augementing the known distribution with a model of short-distance spread by the model. We ran the model twice, assuming two and three generations of C. ohridella, respectively. The project was supported by the Natural Environment Research Council and undertaken at the University of Bristol, UK. Full details about this dataset can be found at https://doi.org/10.5285/9f913f10-6e3d-449e-b8af-8fa2d06d7fd3

  • Data comprise monitoring records of a population of Gryllus campestris, a flightless, univoltine field cricket that lives in and around burrows excavated among the grass in a meadow in Asturias (North Spain). The area has an altitude range from around 60 to 270 metres above sea level. Data include basic traits, behavioural data, genotypes and pheromones. Data were collected from 2006 to 2016. Full details about this dataset can be found at https://doi.org/10.5285/42d9fc5d-f30e-46a9-9d09-50272f4538cb

  • This dataset provides linear trends, over varying time periods, for the UK Butterfly Monitoring Scheme (UKBMS) Collated Indices of individual butterfly species across the UK. The main statistical values derived from a linear regression (slope, standard error, P-value) are presented for the entire time series for each species (1976 to 2011), for the last 20 years, and for the last decade. In addition a trend class, based on slope direction and its significance, and a percentage change for that time period are provided to describe the statistical trends. These trend data are provided for 59 UK butterfly species. Trends across different time series allow us to determine the long and short-term trends for individual species. This is enables us to focus conservation and research and also to assess species responses to conservation already in place. The Centre for Ecology & Hydrology (CEH) and Butterfly Conservation (BC) are responsible for the calculation and interpretation of this trend datasets. The collection of the underlying UKBMS data is reliant on a large volunteer community. The UK Butterfly Monitoring Scheme is funded by a consortium of organisations led by the Joint Nature Conservation Committee (JNCC). This dataset is updated annually and a more recent version of the UKBMS species trends (2012) is now available. Full details about this dataset can be found at https://doi.org/10.5285/cad2af6c-0c97-414c-8d5f-992741b283cf

  • This dataset contains data from the National Plant Monitoring Scheme in 2015. These consist of plant species occurrences, with abundance values, in plots. Plots are nested with 1 km squares, and are georeferenced according to the British/Irish/Channel Islands grid systems, or in latitude/longitude format; the 1 km squares surveyed were selected according to a weighted-random design, designed to enrich the sample for semi-natural habitats. Plots also have associated habitat and spatial information, as well as a small number of other environmental data. The species recorded in any particular plot are dependent on the habitat chosen for the plot by the surveyor, and the level of the scheme at which they were participating. Please see the references in the supporting documentation (survey guidance) for more information. Full details about this dataset can be found at https://doi.org/10.5285/33fe87f9-d45a-41ba-acca-ee8585ea6b7d

  • Collated indices are a relative measure of butterfly abundance across monitored sites in the UK, calculated from data collected by the UK Butterfly Monitoring Scheme (UKBMS). Collated indices are calculated annually for each individual butterfly species that has been recorded on five or more sites in that year. Based on this criterion collated indices have been calculated for the entire UKBMS time series from 1976 to the current year for the majority of species. For some rarer species the time series starts in a later year due to lack of data. Collated indices are calculated using a statistical model that accounts for missing data. The number of sites for each species ranges from 5 to several hundred and varies from year to year. Since 2008 more than 1,000 sites have been monitored across the UK each year. Collated indices are calculated so that we can determine how butterfly populations are changing over time across the UK. This data can be used, for example, to determine where to target conservation efforts and to measure the condition of the UK countryside. Butterflies are recognised as important indicators of biodiversity and environmental change (e.g. as official UK Biodiversity Indicators), and have been used in numerous research studies to understand the impacts of changes in climate and the extent and condition of habitats. Although the UK Centre for Ecology & Hydrology (UKCEH) and Butterfly Conservation (BC) are responsible for the calculation and interpretation of the Collated indices, the collection of the data used in their creation is ultimately reliant on a large volunteer community. The UKBMS is funded by a consortium of organisations led by the Joint Nature Conservation Committee (JNCC). This dataset is updated annually and more recent versions of the UKBMS collated indices are available. Full details about this dataset can be found at https://doi.org/10.5285/31f301f5-5374-45c5-8db5-37ea43422b8d