From 1 - 8 / 8
  • Detrital zircon age data, details of Expedition 362 samples . For more information see published report, https://doi.org/10.1016/j.epsl.2017.07.019 IODP Sites U1480–U1481, located on the Indian oceanic plate, east of the NinetyEast Ridge and west of the north Sumatran subduction margin Site U1480 ~ 3°2.0447'N 91°36.3481'E 4147.5 Site U1481 ~ 2°45.261'N 91°45.5771'E

  • The project data provided herein represents the U-Pb geochemical data for a suite of magmas from Co. Donegal, Ireland. The aim of this data set is the identification of magmatic and inherited zircon grains. The samples were collected in Donegal in 2023 by Dempsey. Within the data Fan = Fanad Granite, Ard = Ardara Granite, MDG = main Donegal granite, Tull = Tullagh Granite, Thor = Thorr Granite. Crushed an separated in Glasgow by Dempsey (23-24). Prepared in Hull and Glasgow (24). Analysed in Hull Laser Ablation Facility by Dempsey (24-25). Processed by Dempsey (25) The Trace element profiles of the magmatic grains, cathode luminescence imagery and the machine learning algorithm will be included upon completion. Raw data is in the form of .xls .seq and .io files which can be opened using the Iolite data processing software. The processed data is in the form of excel spread sheets with isochrons produced using Isoplotr. The contents of rows and columns in these datasets are labelled within the .xls file. The .xls files also include the operation conditions for the laser system and mass spectrometer.

  • This dataset comprises neodymium (Nd) and strontium (Sr) isotope compositions measured on 72 sediment samples, from IODP Expedition 374 Site U1521 to the Ross Sea. These were collected on the RV JOIDES Resolution. Shipboard biostratigraphy and magnetostratigraphy suggests the samples are mainly early Miocene in age (McKay et al., 2019). The uppermost samples do, however, include younger Plio-Pleistocene sediments. Neodymium and Sr isotope analyses were conducted using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) and a thermal ionisation mass spectrometer (TIMS), respectively, in the MAGIC laboratories at Imperial College London. Neodymium and Sr isotopes in sediments can be compared to measurements from terrestrial rock samples, allowing the changing provenance of the sediments to be traced. This dataset therefore provides information on how erosion by Antarctica’s ice sheets bordering the Ross Sea has changed over time. Neodymium isotopes are reported in the epsilon notation, which denotes the deviation in parts per 10,000 from the present-day composition of the Chondritic Uniform Reservoir (143Nd/144Nd = 0.512638) (Jacobsen and Wasserburg, 1980).

  • The files include full analytical details and datasets from the laboratories used for the acquisition of U-Pb zircon geochronology, Lu-Hf isotope geochemistry and 40Ar/39Ar analysis of detrital white mica. Also included are a list of all the published datasets used in the construction of the MDS and ridge plots for detailed regional comparisons. The data were collected in the interval January 2021 to March 2022 across a number of laboratories: Stockholm, University College London, British Geological Survey, Trinity College Dublin, Australian National University (U-Pb zircon geochronology); Open University (40Ar/39Ar analysis) and British Geological Survey (Lu-Hf isotopes). The analyses were conducted by Teal Riley (Stockholm, British Geological Survey), Ian Millar (Australian National University), Andrew Carter (University College London), Joaquin Bastias (Trinity College Dublin), Craig Storey (Open University). The analyses were conducted to examine the provenance and depositional history of the accretionary LeMay Group complex of Alexander Island.

  • Geological fieldwork was carried out in the Hudson Mountains during the 2005/6 and 2019/20 Antarctic summers to help understand the glacial history of the Pine Island Glacier region of West Antarctica. To accurately determine the crystallisation age of a suite of granitoid glacial erratics, we conducted a detailed analysis of zircon U-Pb geochronology. The dataset here provides U-Pb zircon geochronology data for 10 rock samples, collected from the Hudson Mountains. The data were collected in November 2024 at University College London. The analyses were conducted by Andrew Carter (University College London). This work was funded by NERC grant (NE/S006710/1) to Joanne Johnson.

  • This dataset comprises 40Ar/39Ar dated detrital hornblende grains for 5 samples from IODP Expedition 374 Site U1521 to the Ross Sea, collected on the RV JOIDES Resolution. Shipboard biostratigraphy and magnetostratigraphy suggests the samples are early Miocene in age (McKay et al., 2019, Proceedings of the International Ocean Discovery Program). These data can be compared to terrestrial geochronological data, allowing the changing provenance of the sediments to be traced.

  • Geological fieldwork was carried out in the Falkland Islands in March 2022 to help understand the depositional history and provenance of Late Permian sedimentary rocks of East Falkland. To accurately determine their depositional age and precise provenance we conducted a detailed analysis of zircon geochronology and geochemistry. The files provided here include full analytical details and datasets from the laboratories used for the acquisition of U-Pb zircon geochronology and Lu-Hf isotope geochemistry. The data were collected in the interval November 2023 to July 2024 across a number of laboratories: University College London and Australian National University (U-Pb zircon geochronology); British Geological Survey (Lu-Hf isotopes). The analyses were conducted by Ian Millar (Canberra, British Geological Survey) and Andrew Carter (University College London). The analyses were conducted to examine the provenance and depositional history of the sedimentary successions of the Falkland Islands. Funding: This work was supported by NERC National Capability funding (Polar Expertise Supporting UK Research).

  • Files contain heavy mineral (HM) and framework petrography data for samples taken from sediments across Northern China, from Tarim in the west to Ordos in central north China. The data come from river, loess, silt and sand sediments from deserts, the Chinese Loess Plateau, major rivers and alluvial fans of ages spanning the Cenozoic to modern. Data are grouped into tables with sample details and data types. Each file pertains to a given paper: Stevens et al., 2013a: doi:10.1016/j.quascirev.2012.11.032 Stevens et al., 2013b: doi:10.1016/j.quascirev.2013.10.014 Bird et al., 2015: doi:10.1016/j.palaeo.2015.06.024 Nie et al., 2015: doi:10.1038/ncomms9511 Rittner et al., 2016: doi:10.1016/j.epsl.2015.12.036 Supplementary Material - Contains Hf, Nd and Sr isotopic data from modern, Pleistocene and Pliocene samples from surface and sediment section sediments from Northern China. Including loess, red clay, sandy desert, alluvial fan and river bar and terrace sediments. Samples obtained between 2010 and 2014.