From 1 - 5 / 5
  • Geochemical data for the Huainan Basin include Fe speciation data; P speciation data; elemental Al, Fe, P, Mn, Sr data, total organic carbon; C isotope ratios of organic C and carbonates. Geochemical data for the Taoudeni Basin and the Anamikie Basin include Fe speciation data; P speciation data; and elemental P and total organic carbon analyses.

  • This dataset contains potential activities of soil extra cellular enzyme measured from soil samples from the Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment (PLACE). The enzyme activities measured are 1,4-β-glucosidase, cellobiohydrolase, N-acetyl β-D-glucosaminidase, leucine aminopeptidase, and acid phosphatase. Soil samples were collected in Autumn 2018 and analysed in the laboratory at Wageningen University. The experimental design uses 35 cm x 35 cm turf mesocosms from a long term nutrient manipulation experiment. The original experiment is based at Wardlow Hay Cop in the Peak District, UK. Two adjacent P-limited grass lands on a limestone/ calcareous soil and an acidic soil have had nutrient manipulated for > 20 years. In 2018 these mesocosms were exposed to either ambient CO2 (ca. 410 ppm) or 600 ppm. Full details about this dataset can be found at https://doi.org/10.5285/5e944db2-305f-4f15-87b4-5110224ac90d

  • Topsoil nutrient data - total nitrogen (N) concentration (%), C:N ratio and Olsen-Phosphorus (mg/kg). Data is representative of 0 - 15 cm soil depth. Cores from 256 1km x 1km squares across Great Britain were analysed in 2007. For total N concentration (and therefore C:N ratio), a total of 1024 cores were analysed, and for Olsen-P, a total of 1054 cores were analysed. See Emmett et al. 2010 for further details of sampling and methods (http://nora.nerc.ac.uk/id/eprint/5201/1/CS_UK_2007_TR3%5B1%5D.pdf). Estimates of mean values within selected habitats and parent material characteristics across GB were made using Countryside Survey (CS) data from 1978, 1998 and 2007 using a mixed model approach. The estimated means of habitat/parent material combinations are modelled on dominant habitat and parent material characteristics derived from the Land Cover Map 2007 and Parent Material Model 2009, respectively. The parent material characteristic used was that which minimised AIC in each model (see Dataset Documentation). Please see Scott, 2008 for further details of similar statistical analysis (http://nora.nerc.ac.uk/id/eprint/5202/1/CS_UK_2007_TR4%5B1%5D.pdf). Areas, such as urban and littoral rock, are not sampled by CS and therefore have no associated data. Also, in some circumstances sample sizes for particular habitat / parent material combinations were insufficient to estimate mean values. Full details about this dataset can be found at https://doi.org/10.5285/7055965b-7fe5-442b-902d-63193cbe001c

  • This product consists of maps of predicted average annual application rates of three different inorganic chemical fertilisers – nitrogen (N), phosphorus (P) and potassium (K) - in England across a six-year period (2010-2015). The estimates, along with their respective estimates of uncertainty, are provided at a 1 km x 1 km resolution. These data were modelled from Defra British Survey of Fertiliser Practice (BSFP) data using a spatial interpolation procedure. Different uses and potential applications of the produced maps, including the following: 1) Modelling nutrient fate to predict impacts of changes in farming practices (intensification/extensification) on nutrient runoff to water; 2) Estimating greenhouse gases (GHG) emissions due to fertiliser application to crops and grassland (linked with air quality impacts); 3) Quantifying past and future impacts of eutrophication and/or agricultural management on agricultural ecosystems and indicators such as arable plants, farmland birds, pollinators; 4) Linking crop growth models to predict areas where better nutrient management may improve yields; 5) Improving policies aimed at mitigating negative impacts of fertiliser use (e.g. catchment sensitive farming to reduce pollution and/or improve water quality). This data product was funded by the Natural Environment Research Council (NERC) under research programme NE/N018125/1 Achieving Sustainable Agricultural Systems (ASSIST). ASSIST is an initiative jointly supported by NERC and the Biotechnology and Biological Sciences Research Council (BBSRC). Full details about this dataset can be found at https://doi.org/10.5285/15f415db-e87b-4ab5-a2fb-37a78e7bf051

  • This web map service (WMS) depicts estimates of mean values of soil bacteria, invertebrates, carbon, nutrients and pH within selected habitats and parent material characteristics across GB . Estimates were made using CS data using a mixed model approach. The estimated means of habitat/parent material combinations using 2007 data are modelled on dominant habitat and parent material characteristics derived from the Land Cover Map 2007 and Parent Material Model 2009, respectively. Bacteria data is representative of 0 - 15 cm soil depth and includes bacterial community structure as assessed by ordination scores. Invertebrate data is representative of 0 - 8 cm soil depth and includes Total catch, Mite:Springtail ratio, Number of broad taxa and Shannon diversity. Gravimetric moisture content (%) data is representative of 0 - 15 cm soil depth Carbon data is representative of 0-15 cm soil depth and includes Loss-on-ignition (%), Carbon concentration (g kg-1) and Carbon density (t ha-1). Loss-on-ignition was determined by combustion of 10g dry soil at 375 deg C for 16 hours; carbon concentration was estimated by multiplying LOI by a factor of 0.55, and carbon density was estimated by combining carbon concentration with bulk density estimates. Nutrient data is representative of 0 - 15 cm soil depth and includes total nitrogen (N) concentration (%), C:N ratio and Olsen-Phosphorus (mg/kg). pH and bulk density (g cm-3) data is representative of 0 - 15 cm soil depth. Topsoil pH was measured using 10g of field moist soil with 25ml de-ionised water giving a ratio of soil to water of 1:2.5 by weight; bulk density was estimated by making detailed weight measurements throughout the soil processing procedure. Areas, such as urban and littoral rock, are not sampled by CS and therefore have no associated data. Also, in some circumstances sample sizes for particular habitat/parent material combinations were insufficient to estimate mean values.